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“If I have seen further than others, it is by standing on the shoulders of giants.”

– Isaac Newton

This document is dedicated to the best solutions (or at least attempt thereof) to exercise
problems of Graph Theory II at the University of Hamburg. Specifically, the document
will discuss all problems that were on exercise sheets of the course in the winter semester
2022 - 2023. Whenever I refer to a theorem, lemma, etc. I refer to the corresponding
theorem, lemma, . . . in Diestel’s Graph Theory where I am using the fifth edition. The
solutions may serve as a substitute for the (disappointing) lack of model solutions to the
(fairly) consistent problem sets of this course. I hope it will help students in the future,
especially those struggling from a less wide graph theory background. It may not be
used for cheating or copying. Good luck and viel Erfolg!
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Sheet 1

Exercise 1

For a graph G = (V,E) and |X| ⊆ V let N≥2(X) be the set of vertices outside X having
at least two neighbours in X, i.e.

N≥2(X) = {v ∈ V \X : |N(v) ∩X| ≥ 2} .

Suppose |N≥2(X)| ≥ |X| for every independent subset X ⊆ V of size at least 2.
Then G contains a matching covering all but at most one vertex.

Proof. Without loss of generality we may assume that G is non-empty. By the stronger
version of Tutte’s Theorem, it suffices to show that def(G) ≤ 1. As in Diestel, let q(S)
denote the number of odd components in G− S.
Case 1: S = ∅. We will show that q(S) ≤ 1. For the sake of contradiction, assume that

q(S) ≥ 2, i.e. there are at least two (different) odd components C1, C2 ⊆ G−S.
Let x1 ∈ V (C1), x2 ∈ V (C2) be two vertices of the given components and
consider X =

{
x1, x2}. X forms an independent set as they are in different

components in G − S. Since |N≥2(X)| ≥ |X| = 2 by assumption, there must
be some vertex y ∈ V (G) which is adjacent to both x1 and x2 which means
that they must actually be in the same connected component. �

Case 2: S ̸= ∅. Again, for the sake of contradiction, assume that q(S) > |S|. Let
C1, . . . , Cq(S) be the different components and let xi be an arbitrary vertex
from Ci (i ∈ [q(S)]). Consider X =

{
xi | i ∈ [q(S)]

}
. By construction, X is

an independent set of size q(S). In particular, we get |N≥2(X)| ≥ |X| > |S|.
However, N≥2(X) ⊆ S. �

This completes the proof.

Alternative proof. According to the Gallai-Edmonds Structure Theorem1, there is a
vertex set S in G such that:

(i) S is matchable to CG−S
2.

(ii) Every component of G− S is factor-critical.
Take out of every component in CG−S a vertex and put them in a set X. Then |X| =
|CG−S | and X is independent. So, we have that |N≥2(X)| ≥ |X|. However, note that
N≥2(X) ⊆ S, meaning that

|S| ≥ |N≥2(X)| ≥ |X| = |CG−S |
(i)
≥ |S| =⇒ |S| = |CG−S | .

(i) in particular then implies that you can create a perfect matching by matching each
vertex in S to one of some component in CG−S and then utilizing the factor-criticality
of each component.

1Theorem 2.2.3 in Diestel.
2The set of components of G − S.
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Exercise 2

A graph G = (V,E) is vertex transitive if, for any two vertices v, w ∈ V , there is an
automorphism φ of G with φ(v) = w. Then every connected, vertex-transitive graph
with an even number of vertices contains a perfect matching.

Elementary Proof. Suppose for a contradiction that we don’t have a perfect matching
and pick an S according to Gallai-Edmonds Structure Theorem / Theorem 2.2.3. Since
the graph is connected and has an even number of vertices, S must be non-empty.
Recall that every component of G−S (denoted by CG−S) is odd due to (ii) in Theorem
2.2.3. Hence, by the choice of S as the set with the worst deficiency, the stronger version
of Tutte’s Theorem asserts that a maximum matching covers all but |CG−S |−|S| vertices.
Thus, every maximum matching induces a matching (covering S) between S and CG−S .
Since every maximum matching needs to cover S, it follows that there is some v ∈ S
that is covered in all maximum matchings. Let M be a maximum matching and let u
be a vertex uncovered by M . By the vertex transitivity there is an automorphism φ
that brings u to v. Then the image of M under φ is a maximum matching avoiding v,
a contradiction.

Proof using the full statement of the Gallai-Edmonds Structure Theorem. Note that an
automorphism φ of G always preserves matchings in the sense that if M is a matching,
then φ(M) := {φ(v)φ(w) | vw ∈ M} is a matching of the same size.
Since G is transitive, we either have that

• for every v ∈ V (G) there is a maximum matching avoiding v, or that
• for every v ∈ V (G) every maximum matching covers v.

Indeed, if there is a maximum matching M avoiding some v ∈ V , then we can apply the
automorphism φ of G with φ(v) = w and φ(M) would then be a maximum matching
avoiding φ(v) = w.
In the latter case, a maximum matching would be perfect, thus we would done.
So, for the sake of contradiction, consider the first case. Let D(G) ∈ V (G) be the set of
vertices that are avoided by some maximum matching. According to the Gallai-Edmonds
Structure Theorem / Theorem 2.2.33, S, the set of vertices v ̸∈ D(G) with N(v)∩D(G) ̸=
∅, is a set of maximal deficiency, i.e. def(G) = maxT ⊆V q(G−T ) − |T | = q(G−S) − |S|.
As we are in the first case, S = ∅. However, for S = ∅, we have a deficiency of 0 as G
is even and connected. This means that, contrary to our assumptions, there is a perfect
matching (by the stronger version of Tutte’s Theorem) which in particular covers every
vertex of V (G).

Bonus Question (Theorem 2.2.3 =⇒ Gallai-Edmonds Structure Theorem). Let G be
a graph. Then S ⊆ V (G) can be chosen in such a way that S is strongly matchable to
the odd components in G−S, which we denote by CG−S and which are all factor-critical,
and all even components in G− S have perfect matchings. Furthermore, S is unique.

3Theorem 2.2.3 is only a lean version of the full Gallai-Edmonds Structure Theorem.
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Proof. As in the proof of Theorem 2.2.3, choose S′ in such a way that maximum
deficiency q(G − S′) − |S′| and is of maximal size. We have shown that G − S′ only
has odd components which are all factor-critical and with S′ matchable to CG−S′ .
Note that, as every maximum matching does not cover exactly q(G− S′) − |S′| vertices
by the stronger version of Tutte’s Theorem, Theorem 2.2.3 implies that every maximum
matching M covers all vertices in S′ and never contains an edge between vertices in S′.
Concretely, every s ∈ S′ is matched to a vertex of a component in CG−S′ where no two
distinct vertices in S′ are matched to vertices of the same component. Those components
that contain a vertex matched to a vertex in S′ are completely covered by M and those
that do not have exactly one vertex that is not covered by M .
Now, our goal is to iteratively shrink S′ to a desired S: Assume that X ⊆ S′ is not
strongly matchable, i.e.

∣∣∣NGS′ (X)
∣∣∣ = |X|, where GS′ denotes the bipartite graphs with

partition classes S′ and the set of odd components of G − S′ as in the preliminary
of Theorem 2.2.3. Then X together with the odd components in NG′

S
(X) induce an

even subgraph4 in G which, as every component in NG′
S
(X) is factor-critical and X is

matchable to NG′
S
(X), has a perfect matching. Furthermore, S′ \ X is matchable to

CG−(S′\X). Indeed, if that was not the case, then there exists Y ⊆ S′ \ X such that∣∣∣NGS′\X
(Y )

∣∣∣ < |Y |. But this contradicts S′ being matchable to CG−S′ as∣∣∣NGS′ (X ·∪Y )
∣∣∣ =

∣∣∣NGS′ (X)
∣∣∣+ ∣∣∣NGS′\X

(Y )
∣∣∣ < |X| + |Y | = |X ·∪Y | . �

Furthermore, as the components in CG−(S′\X) are exactly those components in CG−S′

that were in GS′ not adjacent to X, we get that S′ \ X also has maximum deficiency
and that every component in CG−(S′\X) is factor-critical. Moreover, note that by our
observation on how every maximum matching M is structured, we have that every
maximum matching must cover all vertices contained in the even components of G −
(S′ \ X), every s ∈ S′ \ X is matched to a vertex of a component in CG−S′ where no
two distinct vertices in S′ are matched to vertices of the same component. Those odd
components that contain a vertex matched to a vertex in S′ are completely covered by
M and those that do not have exactly one vertex that is not covered by M .
We may apply the above reduction iteratively until the resulting set S ⊆ S′ is strongly
matchable to CG−S and has all the other desired results.
For the uniqueness, we consider the vertices contained in even components of G − S,
those contained in odd components of G − S and those in S separately, where we will
refer to them as being of type 1, type 2 and type 3 in that order. As discussed, type
1 and 3 vertices are always covered by a maximum matching. Consider now a vertex
v ∈ V (G) of type 2. In G− v, the component containing v becomes an even component
in G − v − S and has by the factor-criticaliy a perfect matching. Furthermore, as S is
strongly matchable to CG−S , S is also matchable to CG−v−S , so we can find a matching
covering S with one endpoint in S and the other in CG−v−S where – again – no two
vertices in S get matched to vertices in the same odd component. Thus, by the factor-
criticality of all of the odd components that did not contain v, which are exactly the

4As in every connected component in the subgraph is of even order.
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components in CG−v−S , and the fact that all even components have a perfect matching,
we can extend the matching covering S to a maximum matching M of G − v. As it
is of the same size as a maximum matching of G by construction, we get that M is a
maximum matching of G that doesn’t contain v. Hence, for every type 2 vertex v there
exists a maximum matching that does not contain v.
Thus, we conclude that type 1 vertices are exactly the vertices that are contained in
every maximum matching and are not adjacent to any vertex of type 2, type 2 vertices
are exactly the vertices for which there exists a maximum matching that does not contain
them, and type 3 – or vertices in S – are exactly those vertices that are contained in
every maximum matching but are adjacent to a vertex of type 2.
This completes the proof.

Exercise 3

Let T be a tree and let T be a set of subtrees of T . Then the maximum number of
disjoint5 trees in T equals the least cardinality of a set X of vertices such that T − X
contains no tree from T .

Proof. We will do an induction on the number of vertices n := |V (T )|. If n = 1, then
the claim is clear. So, consider n > 1, meaning that T has at least one leaf v.
We will say that X ⊆ V (T ) hits a tree H ⊆ T if X ∩ V (H) ̸= ∅. Note that X hits all
trees in T if and only if T −X contains no tree from T . We do a case distinction:

Case 1: There is a subtree H ∈ T that only consists of a leaf v in T , i.e. H = ({v} , ∅).
Then, to hitH, anyX as above must contain v. So, it is sufficient and necessary
for X \ {v} to hit all trees not containing v. Hence, consider

T ′ := T − v,

T ′ := {H ∈ T | v ̸∈ V (H)} .

Let M′ ⊆ T ′ be a maximum set of disjoint trees and X ′ ⊆ V (T ′) be a least
cardinality set such that T ′ − X ′ contains no tree from T ′. By the induction
hypothesis, |M′| = |X ′|. Now, let M := M′ ·∪ {H} and X = X ′ ·∪ {v}.
As X ′ hits all trees in T ′ and is minimum in size, it is clear that X as defined
is a least cardinality set hitting all trees in T . So, it remains to show that M
is a maximum set of disjoint trees of T : Note that any maximum set N of
disjoint trees of T contains a tree containing v as otherwise we could add to
the set H. Furthermore, we may assume that H is in that maximum set of
disjoint trees, as otherwise we could replace the tree in Y containing v by H.
So, for N \ {H} to be optimal, it is necessary and sufficient to consider exactly
the trees in T ′. Therefore, M as constructed is indeed optimal.

5As in vertex-disjoint.
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Case 2: ({v} , ∅) ̸∈ T . Then let

T ′ := T − v,

T ′ := {H − v | H ∈ T } .

As v is a leaf, T ′ and the elements of T ′ remain trees. Furthermore, let M′ ⊆ T ′

be a maximum set of disjoint trees and X ⊆ V (T ′) be a least cardinality set
such that T ′ − X contains no tree from T ′. By the induction hypothesis,
|M′| = |X|. Let M be the set of trees in T corresponding to the trees in M′.6
Note that M has the same cardinality as M′ as the trees in M′ are disjoint.
We now claim that M and X also satisfy their respective properties for T .
Indeed, as v is a leaf, any two trees in T that contain v must also contain v’s
unique neighbor u ∈ V (T ). As u is contained in at most one tree of M′, M can
contain at most one tree containing v and is thus also a set of disjoint trees. It
is also clear that M is optimal in size as applying the mapping H 7→ H \ {v}
will always lead to a maximum set of disjoint trees of T ′ of the same cardinality.
It is also clear that X hits every tree in T , as it hits every tree in T ′ by
assumption. Furthermore, X is also optimal in size with respect to T as any
Y hitting all trees in T also hits all trees in T ′.

This completes the proof.

Remark. The following infinite analogue can be shown via transfinite induction: Let T
be on infinite tree that does not contain infinite paths and let T be a family of subtrees.
Then there is a disjoint T ′ ⊆ T such that one can choose exactly one vertex from each
H ∈ T ′ such that the resulting set X meets every element of T .

Exercise 4

Every graph, which does not contain two vertex-disjoint cycles, can be turned into a
forest by removing at most three vertices.

Proof. Let G be a (with respect to the size of V (G)) minimal counterexample to the
claim, i.e. G is a graph with no two vertex-disjoint cycles such that one needs to remove
four vertices for G to turn into a forest. Clearly, G is non-empty and contains cycles.

1. G is connected. Otherwise, if C1, . . . , Cm,m > 1, are the connected components of
G, exactly one of the Ci contains cycles, so we get a smaller counterexample. �

2. G is C3-free: If G contains a C3, deleting the vertices on that cycle would, by
assumption, create a forest. �

3. δ(G) ≥ 3: Assume otherwise. Clearly, G can’t contain isolated vertices or leaves due
to minimality. So, let v be of degree 2 with neighbors u,w. Note that uw ̸∈ E(G)

6If H ∈ T with v ∈ H and H − v ∈ T , then choose H − v for M.
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since G is C3-free. Consider the graph H = G − v + {uw} which still has no
two vertex-disjoint cycles. Furthermore, as G − {x, y, z} is not a forest for all
x, y, z ∈ V (H), the same is true for H − {x, y, z}. So G is not minimal. �

4. Moreover, G needs to be C4-free: LetG contain a C4 induced by vertices v1, v2, v3, v4
(in that order). Denote this cycle by C. Since G doesn’t contain two vertex-disjoint
cycles, every cycle in G must intersect with C and G− C must be a forest that is
non-empty due to 2.
We first observe that no vertex v ∈ V (G−C) can be adjacent to vertices vi, vi+1 for
some i ∈ [4] as this would induce a triangle. In particular, no vertex v ∈ V (G−C)
can be adjacent to three vertices of C and if v is adjacent to two vertices of C, they
need to be vi, vi+2 for some i ∈ [2].
As G−C is a non-empty forest, it must contain a vertex v with degG−C(v) ≤ 1. To
satisfy δ(G) ≥ 3, we actually must have degG(v) = 3 and that v must be adjacent
to exactly two non-adjacent vertices of C, so w.lo.g. NG(v) ∩ V (C) = {v1, v3}.
As G is a counterexample, G− {v1, v2, v3} must contain a cycle C ′. As C ′ needs to
intersect C, V (C ′) ∩ V (C) = {v4}.
Note however that v ̸∈ V (C ′). Indeed, obviously we have v ̸= v4 and by definition
that v is not adjacent to v4. So, if v ∈ V (C ′), v would have to be adjacent to two
distinct vertices in V (G− C), which is also not the case due to degG−C(v) ≤ 1.
However, this means that C ′ and v1v2v3vv1 are two vertex-disjoint cycles in G. �

5. G doesn’t exist: Let C be a shortest cycle in G. Note that by the above, |C| > 4.
Now, every vertex V −C has at most one neighbor in C. Indeed, if v ∈ V −C has
two neighbors u,w, then either one of the u-w-segments of C is of length 1, so with
uvw would create a triangle, or one of its segments has at most length |C| /2, so
the segment together with uvw creates a cycle of length |C| /2 + 2 < |C|. �

Now, if we were to consider G−C, note that δ(G−C) ≥ 2, so G−C must contain
a cycle, contradicting G containing no two vertex-disjoint cycles. �

This concludes our proof.

Sheet 2

Exercise 1

The edge set of every outerplanar graph is the union of two forests.

Proof. We first recall some facts about planar graphs:
• Euler’s formula asserts that if G is a connected, planar graph with n vertices, m

edges and f faces, then n−m+ f = 2.
• By counting the number of edge-face-incidences, we get 3f ≤ 2m, so plugging that

into Euler’s formula, we have for G as above

3 · (n−m− 2) ≤ 2m =⇒ m ≤ 3n− 6.
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• Let G now be an outerplanar graph. Consider the graph H where we add to G
a vertex which is adjacent to every other vertex of G. Note that H is planar and
connected with |E(G)| + |V (G)| edges and |V (G)| + 1 vertices. So,

|E(G)| + |V (G)| ≤ 3 · (|V (G)| + 1) − 6 =⇒ |E(G)| ≤ 2 · |V (G)| − 3.

So, again, let G be an outerplanar graph. Note that the drawing of G in which every
vertex lies on the boundary also naturally induces a planar drawing of G[U ] in which
every vertex of U lies on the boundary for every U ⊆ V . This shows that being
outerplanar is hereditary with respect to the subgraph-relation. By our bound above for
the number of edges for planar graphs, we get

|E(G[U ])| ≤ 2 · |U | − 3 ≤ 2 · (|U | − 1)

for every U ⊆ V . Thus, by Theorem 2.4.3 (Nash-Williams 1964), we get that G can be
covered by at most 2 trees F1 and F2. By suitably deleting from F1 and F2 edges that
are not in G, we thus get that G is the (edge-disjoint) union of forests F1 and F2.

Exercise 2

If G is a k-linked graph, we have that
(i) G is (2k − 1)-connected, and
(ii) if s1, . . . , sk, t1, . . . , tk are not necessarily distinct vertices of G such that si ̸= ti

for all i ∈ [k], then G contains independent si-ti-paths Pi for i ∈ [k].

Proof. Let G be a k-linked graph.
(i) Assume not, i.e. there are 2k− 2 distinct vertices s1, . . . , sk−1, t1, . . . , tk−1 such

that their deletion disconnects G. Denote the set of those 2k − 2 vertices by S
and consider sk, tk ∈ V (G−S) of different connected components of G−S. As
G is k-linked, there are vertex-disjoint si-ti-paths Pi for every i ∈ [k]. However,
the path Pk must exist in G− S due to the vertex-disjointness of the paths. �

(ii) Let S = (s1, . . . , sk, t1, . . . , tk). Denote by N the number of vertices that appear
more than once in S. We will do an induction on N .
For the induction base, consider N = 0. In other words, the vertices in S
are distinct. Hence, the existence of those paths follows directly from the k-
linkedness.
For the induction step, assume N > 0. Let v ∈ V (G) be such a vertex that
appears r > 1 times. Since we have si ̸= ti for all i ∈ [k], r is at most k. By
(i), we know that G is (2k − 1)-connected, so in particular |N(v)| ≥ 2k − 1.
We will now count how many other vertices can appear at most in S: From each
pair that does’t involve v, we gain at most two vertices, and for each involving
v we get at most one. Hence, there are at most 2(k − r) + r = 2k + r other
vertices. So, there are at least

(2k − 1) − (2k + r) = r − 1

7



neighbors of v that do not appear in S.
Hence, consider the sequence s′

1, . . . , s
′
k, t

′
1, . . . , t

′
k where we replaced r−1 occur-

rences of v by those neighbors such that v and those neighbors appear only once
in the sequence. This new sequence thus has N−1 vertices that appear multiple
times, i.e., by applying the induction hypothesis, we get s′

i-t′i-paths P ′
i that are

independent. In particular, since v appears in one of the paths as endpoint
where v is distinct in the sequence, none of the other paths contain v. So, the
paths, where one endpoint is a previously chosen neighbor of v, can be extended
to v. These new resulting paths (Pi)i∈[k] are now independent si-ti-paths.

This completes the proof.

Exercise 3

Every k2-linked graph contains a TKk.

Proof. If k ∈ {1, 2}, the statement is clear. For k > 2, we shall prove a stronger
statement, specifically that

(k
2
)
-linkedness is sufficient: LetG be

(k
2
)
-linked. By definition,

G contains 2·
(k

2
)

= k·(k−1) > k vertices. So, take arbitrary vertices v1, . . . , vk. Applying
Exercise 2 (ii), where for every edge in {i, j} ∈

([k]
2
)

(let’s say that this is the l-th edge
enumerating

([k]
2
)
) we add sl = vi, tl = vj , we get that there are independent vi-vj-paths

for all {i, j} ∈
([k]

2
)
, i < j. The graph formed by the union of these paths is a TKk.

Exercise 4

(i) For every k ∈ N there exists a (3k − 3)-connected graph that isn’t k-linked.

Proof. Let G be a graph with vertices s1, . . . , sk, t1, . . . , tk and additional k− 1
vertices, so |G| = 3k − 1 > 3k − 3. Furthermore, let

E(G) =
(
V (G)

2

)
− {siti | i ∈ [k]} .

By Menger’s Theorem, to prove (3k− 3)-connectedness, it suffices to show that
∀ a, b ∈ V (G), a ̸= b, we have 3k − 3 independent a-b-paths.
By construction, every such pair a, b is of the form si, ti for some i ∈ [k]. But
again by construction, we know that all other (3k−1)−2 = 3k−3 are adjacent
to both of these vertices, so in particular we find 3k− 3 independent a-b-paths.
However, G is not k-linked, as there are no vertex-disjoint si-ti-paths for all
i ∈ [k] since every such path needs to use one of the k − 1 additional vertices.
This completes the proof.

(ii) There is a sequence of graphs (Gn)n∈N such that |V (Gn)| → ∞ as n → ∞ and
Gn is 5-connected but not 2-linked for every n ∈ N.
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Figure 1: H1

Proof sketch (given by Henri in class). Consider a sequence of graphs Hn with
H1 given by Figure 1 and Hi+1 by subdividing each edge in Hi and triangulating
the interior of the “hexagon” such that each individual triangle becomes a
“triforce”. For Gn, take two copies of Hn and add six vertices such that each
vertex is adjacent to every vertex on one “side” of each copy as in Figure 2.
To show that this graph is not 2-linked, take as s1 and t1 the left outmost /
right outmost vertex and for s2 and t2 the uppermost / lowermost vertex as in
Figure 2. “Topologically”, one can see that it is not possible to have any two
disjoint s1-t1- and s2-t2-paths.

Figure 2: Sketch for Gn

The proof that Gn is 5-connected is left as an exercise for the reader.

Remark. Really, what this proof boils down to is that any 5-connected planar
graph where one face is not bounded by a triangle is not 2-linked.
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Sheet 3

Exercise 1 (Gallai’s Theorem)

The edge set of any graph G can be written as a disjoint union E(G) = B ·∪C with C
and B being elements from the cycle space C(G) and the cut space B(G), respectively.

Proof. As elements of C induce exactly the subgraphs with vertex V where every vertex
has even degree7, it suffices to show that we can partition V into V1, V2 such that G[Vi] is
an even graph for i ∈ [2]. Then we can take C = E(G[V1]) ·∪E(G[V2]) and B = E(V1, V2).
Note that, unlike the usual convention, we allow V1 or V2 to be empty.
We will now proceed by induction on the number of vertices n. To indicate with respect
to which graph we consider certain quantities, we will write the graph in the subscript
where necessary. Clearly, the claim is true for n = 1, so consider n > 1. If all vertices in
G have even degree, we can take V1 = V and V2 = ∅. Otherwise, there exists v ∈ V (G)
with odd degree. Define G′ with V (G′) = V (G) \ {v} and

E(G′) = EG(NG(v), V (G′) −NG(v)) ·∪
((

NG(v)
2

)
\ E(G[NG(v)])

)
.

In other words, G′ has the same adjacencies as G except between neighbors of v, where
we invert their adjacency. Now, by induction hypothesis, there is V ′

1 ·∪V ′
2 = V (G′) such

that G′[V ′
i ] is even for all i ∈ [2]. As |NG(v)| is odd, exactly one of |V ′

1 ∩NG(v)| and
|V ′

2 ∩NG(v)| is odd, w.l.o.g. V ′
2 ∩NG(v).

We now claim that V1 = V ′
1 ·∪ {v} and V2 = V ′

2 is a desired partition:
Clearly, v has even degree in G[V1]. As we didn’t change the neighborhoods for vertices
not in NG(v) ∪ {v}, it suffices to show that every vertex w ∈ NG(v) has in its assigned
partition even degree:

1. w ∈ NG(v) ∩ V1: Let N1 = NG(v) ∩ V1 = NG(v) ∩ V ′
1 . As w’s neighborhood got

inverted, we find

EG′[V ′
1 ]({w} , N1) ·∪EG[V1]({w} , N1) = N1 \ {w} .

So, since degG′[V ′
1 ](w) is even and |N1| is even, we get

degG[V1](w) = 1 +
∣∣∣EG[V1]({w} , N1)

∣∣∣+ ∣∣∣EG[V1]({w} , V ′
1 \N1)

∣∣∣
= 1 + (|N1| − 1) −

∣∣∣EG′[V ′
1 ]({w} , N1)

∣∣∣+ ∣∣∣EG′[V ′
1 ]({w} , V ′

1 \N1)
∣∣∣

≡ |N1| +
∣∣∣EG′[V ′

1 ]({w} , N1)
∣∣∣+ ∣∣∣EG′[V ′

1 ]({w} , V ′
1 \N1)

∣∣∣
≡ degG′[V ′

1 ](w)
≡ 0 (mod 2).

7Proposition 1.9.1 in Diestel’s Graph Theory.
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2. w ∈ NG(v) ∩ V2: Let N2 = NG(v) ∩ V2 = NG(v) ∩ V ′
2 . As w’s neighborhood got

inverted, we find

EG′[V ′
2 ]({w} , N2) ·∪EG[V2]({w} , N2) = N2 \ {w} .

So, since degG′[V ′
2 ](w) is even and |N2| is odd, we get

degG[V2](w) =
∣∣∣EG[V2]({w} , N2)

∣∣∣+ ∣∣∣EG[V2]({w} , V2 \N2)
∣∣∣

= (|N2| − 1) −
∣∣∣EG′[V ′

2 ]({w} , N2)
∣∣∣+ ∣∣∣EG′[V ′

2 ]({w} , V ′
2 \N2)

∣∣∣
≡
∣∣∣EG′[V ′

2 ]({w} , N2)
∣∣∣+ ∣∣∣EG′[V ′

2 ]({w} , V ′
2 \N2)

∣∣∣
≡ degG′[V ′

2 ](w)
≡ 0 (mod 2).

This proves the claim.

Remark. Interestingly enough, this theorem is not (to my knowledge) an immediate
consequence of the cycle space and bond space being orthogonal to each other as – at least
when we look at vector spaces over a finite field – orthogonal spaces may non-trivially
intersect.

Exercise 2

(i) In a connected graph the minimal edge sets containing an edge from every
spanning tree are precisely its bonds.

Proof. Let G be a connected graph. We know that in this situation the bonds
are precisely the minimal cuts of G. Call an edge set good if it contains an edge
from every spanning tree.
We first show that an edge set C ⊆ E(G) is a minimal cut if and only if G−C has
exactly two connected components: For the one direction, let C be a minimal
cut. Then, there is a partition (with non-empty partition classes) V1, V2 such
that C = E(V1, V2). Suppose that G[V1] is disconnected. Let V ′

1 ⊆ V1 be a
subset such that G[V ′

1 ] is a connected component in G[V1]. As G is connected,
E(V ′

1 , V2) ̸= ∅. So, E(V1 − V ′
1 , V

′
1 + V2) is a proper subset of C. �

For the other direction, suppose that C is an edge set such that G−C contains
exactly two components. Let V1, V2 be the vertex sets of those components. By
construction, we have C = E(V1, V2), so C is a cut. It is also minimal as any
proper subset of C would connect the two components in G− C such that the
resulting graph stays connected and hence could not be a cut.
It remains to show that G− C contains exactly two components if and only if
C is a minimal good edge set: For the one direction, suppose that C contains
exactly two components. As every spanning tree of G needs to connect the
vertices of V1 and V2, they all must contain an edge of C. It is also clear that
C would be minimal by a similar argument as above.
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For the other direction, suppose that C is a minimal good edge set. Clearly,
removing C disconnects G (otherwise G − C would contain a spanning tree of
G). Let the connected components of G − C be G1, . . . , Gk, k ≥ 2. As G is
connected, there exists j ∈ [k − 1] such that E(Gj , Gk) ̸= ∅. If k > 2, then
consider C ′ = C−E(Gj , Gk). G−C ′ would have exactly k−1 ≥ 2 components,
so C ′ is a proper good subset of C, contradicting C being minimal. �

This proves the claim.

(ii) There are graphs for which the cycle space is not generated by its cycles and
cuts.

Proof. Consider K4. Label the vertices v1, . . . , v4. Clearly, E({v1, v3} , {v2, v4})
is the 4-cycle C = v1v2v3v4v1. This means that C ∈ B(K4) ∩ C(K4), so
dim(B(K4) ∩ C(K4)) ≥ 1. In particular, we have

dim(B(K4) + C(K4)) = dim(B(K4)) + dim(C(K4)) − dim(B(K4) ∩ C(K4))
= dim(B(K4)) + dim(B(K4)⊥) − dim(B(K4) ∩ C(K4))
≤ dim(E(K4)) − 1.

Note that the second equality follows from the bond space and cycle space being
orthogonal to each other. So, E(K4) is not generated by its cycles and cuts.

Exercise 3

A 2-connected plane graph G is bipartite if and only if every face is bounded by an even
cycle.

Classical proof. Let G be a 2-connected plane graph. We know that
• a graph is bipartite if and only if every cycle is of even length,
• a plane graph is 2-connected if and only if every face is bounded by a cycle.

Hence, if G is bipartite, it directly follows that every face is bounded by an even cycle.
For the other direction, assume that there is an odd cycle in G despite every face being
bounded by an even cycle. Let C be an odd cycle with the smallest number of interior
faces. The interior must contain at least 2 faces (otherwise C bounds a face �). By
2-connectedness, there exists P with endpoints on C and edges in the interior of C. Let
C1, C2 be the cycles in C ∪ P different from C. It follows that

|E(C1)| + |E(C2)| = 2 |E(P )|︸ ︷︷ ︸
even

+ |E(C)|︸ ︷︷ ︸
odd

.

This implies that exactly one of C1, C2 is an odd cycle, w.l.o.g. C1. But C1 has fewer
faces in its interior than C. �
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Linear Algebra proof. Again, if G is bipartite, it directly follows that every face is
bounded by an even cycle. So, let G be a 2-connected plane graph where every face
is bounded by an even cycle. Let C be an arbitrary cycle in G. We need to show that C
is of even length. For that, let f1, . . . , fl be the interior faces of C and ei ∈ C(G) denote
the edge set of the boundary cycle Ci of fi. Similary, let eC = E(C) ∈ C(G). Note that

eC =
l∑

i=1
ei.

So, as every fi is bounded by an even cycle, we have

|E(C)| ≡ ⟨eC , E(G)⟩ ≡
l∑

i=1
⟨ei, E(G)⟩ ≡

l∑
i=1

|Ci| ≡ 0 (mod 2).

So C is even and G bipartite.

Exercise 4 (Euler’s Formula)

Every 2-connected plane graph G satisfies Euler’s Formula, i.e.

|V (G)| − |E(G)| + |F (G)| = 2.

Proof. Let G be a 2-connected plane graph with vertex set V , edge set E and face set
F . Let F be the face space (over F2), defined over the power set of F with addition
given by the symmetric difference. Furthermore, let the boundary map φ : F → E be
the linear map given by

φ({f}) = {e ∈ E | e is incident to f.} .

Since {{f} | f ∈ F} forms a basis of F , φ is well-defined.
We will first calculate the kernel of φ: Let M ⊆ F with φ(M) = 0. By

φ(M) =
∑

f∈M

φ({f}),

we know that φ(M) = 0 is exactly the case if every edge e ∈ E appears in an even
number of faces in M . Since G is plane, every edge appears must therefore appear in
two or zero faces in M . Hence, M ∈ {∅, F}. Indeed, if M would be a non-empty, proper
subset of F , then consider a maximal set N ⊆ F \ M such that in the dual graph of
G they would be connected. Since M ̸= ∅ is a proper subset of F , N is a non-empty
proper subset of F as well. Hence, there must be edges that bound both a face in M
and a face in N . However, those edges appear in exactly one face in M . �

Thus, ker(φ) = ⟨{F}⟩.
Next, we analyze φ(F): Let f ∈ F . As each face is bounded by a cycle, we have that
φ({f}) ∈ C. As {{f} | f ∈ F} forms a basis of F , we have that φ(F) ⊆ C. To get
equality, we show that every cycle is in the image of φ.
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For that we will proceed by induction over the number of interior faces N of cycle C: If
N = 1, then C is a cycle bounding a face f , hence φ({f}) = C. Now, let N > 1 and
let f ∈ F be an interior face of C such that f is incident to edges in C. Let Cf be the
unique cycle bounding f . Then, C ′ = C + Cf defines a cycle with N − 1 interior faces,
so by the induction hypothesis, it is in the image of φ. As both C ′ and Cf are in the
image of φ, we have that C is also in the image of φ.
Now, by the dimension formula for linear maps and Theorem 1.9.5, we get

|F | = dim(ker(φ)) + rank(φ) = 1 + dim(C) = |E| − |V | + 2 =⇒ |V | − |E| + |F | = 2.

This completes the proof.

Remark. Using this, one can show that all connected plane graphs G satisfy Euler’s
Formula: If G contains cutvertices v1, . . . , vj , consider the blocks B1, . . . , Bl of G.
W.l.o.g. let all blocks of G be incident to the outer face. Note that the block-cutvertex
graph of G being a tree implies the existence of such an embedding.
Each block would either be a 2-connected plane graph or a bridge, where the latter
obviously satisfies Euler’s Formula. Now, clearly E(B1) ·∪ . . . ·∪E(Bl) = E(G) and the
blocks pairwise “share” exactly one face, namely the outer face.
Furthermore, as the vertices that appear in multiple blocks are exactly the cutvertices,
each cutvertex vi would contribute in the sum ∑l

k=1 |V (Bk)| exactly degG(vi) times, so

|V | =
l∑

k=1
|V (Bk)| −

j∑
i=1

(degG(vi) − 1)

=
l∑

k=1
|V (Bk)| − (|E(G)| − j)

=
l∑

k=1
|V (Bk)| − ((j + l − 1) − j)

=
l∑

k=1
|V (Bk)| − (l − 1),

where G is the block-cutvertex graph of G. The second equality follows from all edges
in G being between cutvertices and blocks and the third equality follows from G being a
tree. So, putting all of this together, we get

|V (G)| − |E(G)| + |F (G)| =
l∑

k=1
|V (Bk)| − (l − 1) −

l∑
k=1

|E(Bk)| +
l∑

k=1
|F (Bk)| − (l − 1)

=
l∑

k=1
(|V (Bk)| − |E(Bk)| + |F (Bk)|) − 2(l − 1)

= 2.
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Sheet 4

Exercise 1

For a graph G = (V,E) let A(G) denote the adjacency matrix of G and let λ1(G) ≥
λ2(G) ≥ · · · ≥ λ|V |(G) denote the eigenvalues of A(G).
Then ∑|V |

i=1 λ
k
i (G) is the number of closed walks of length k for every k ≥ 0.

Proof. For the sake of brevity, we will set A = A(G) and sometimes call a walk of length
k a k-walk.

(1) (Ak)u,v is the number of u-v-walks of length k for u, v ∈ V . We will show this by
induction on k ≥ 0: If k = 0 or k = 1, the claim is clear. So, consider k > 1.
For vertices u,w ∈ V , we have that

(Ak+1)u,w =
∑
v∈V

(Ak)u,v ·Av,w.

By the induction hypothesis, (Ak)u,v is exactly the number of u-v-walks of length
k. So, as such a walk is extendable to a u-w-walk of length k + 1 if and only if
vw ∈ E, we see that (Ak+1)u,w counts the number of u-w-walks of length k+ 1 as
claimed.

(2) By (1), tr(Ak) therefore counts the number of closed k-walks.

(3) tr(Ak) = ∑|V |
i=1 λ

k
i (G) for all k ≥ 0: Since A is real and symmetric, there exists by

the Spectral Theorem an orthogonal matrix U ∈ RV ×V such that

A = U · diag(λ1, λ2, . . . , λ|V |) · U⊤.

In particular, this also means that

Ak =
(
U · diag(λ1, λ2, . . . , λ|V |) · U⊤

)k

= U ·
(
diag(λ1, λ2, . . . , λ|V |)

)k
· U⊤

= U · diag(λk
1, λ

k
2, . . . , λ

k
|V |) · U⊤.

As the trace of a matrix is a similarity-invariant, we in particular get

tr(Ak) =
|V |∑
i=1

λk
i (G).

This completes the proof.

Remark. There was a discussion whether you could also interpret the quantity as k
times the number of closed k-walks that are (ignoring the starting point) equal. But
this doesn’t work, as for example the closed k-walk by just repeatedly walking back and
forth on an edge doesn’t give you k different closed walks.
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Exercise 2

We have ch(K2,...,2) = n for the complete n-partite graph with two vertices in each class.

Proof. We prove the statement by induction on n. Denote the complete n-partite graph
with two vertices in each class by Gn. We may relabel the vertices of Gn such that

V (Gn) := {ai : i ∈ [n]} ·∪ {bi : i ∈ [n]} and E(Gn) :=
(
V (Gn)

2

)
\ {aibi : i ∈ [n]} .

Consider n = 1 for the induction base. As E(G1) = ∅, we trivially have ch(G1) = 1.
Assume now that the claim holds for a fixed, but abitrary n ∈ N and consider Gn+1.
Clearly, as Gn+1[{ai : i ∈ [n+ 1]}] ≃ Kn+1, each ai needs to be assigned a different color
for a proper coloring. Hence, we have that Gn+1 is not L-list-colorable with L(v) = [n]
for all v ∈ V (Gn+1). Therefore, ch(Gn+1) ≥ n+ 1. To show equality, it suffices to show
that Gn+1 is (n+ 1)-list-colorable:
Let L be an arbitrary list of colors such that |L(v)| = n+ 1 for all v ∈ V (Gn+1).

Case 1: ∃ i ∈ [n+ 1] : L(ai) ∩ L(bi) ̸= ∅. Let x ∈ L(ai) ∩ L(bi). Define the list of colors
L′ : V ′, v 7→ L(v) \ {x} with V ′ := V (Gn+1) \ {ai, bi}. Note that |L′(v)| ≥ n for
all v ∈ V ′. Furthermore, we have that

E(Gn+1[V ′]) =
(
V ′

2

)
\ {ajbj : j ∈ [n+ 1] \ {i}} =⇒ Gn+1[V ′] ≃ Gn.

So, applying the induction hypothesis, there exists a coloring c′ with c′(v) ∈
L′(v) ⊆ L(v) for all v ∈ V ′. Using c′, define

c : V (Gn+1) → N, v 7→
{
x, v ∈ {ai, bi}
c′(v), otherwise.

Indeed, c is a proper L-coloring since none of the v ∈ V ′ are colored with x, ai

and bi are not adjacent and c(v) ∈ L(v) for all v ∈ V (Gn+1).

Case 2: ∀ i ∈ [n+ 1] : L(ai) ∩ L(bi) = ∅. If Case 2 is the case, define a bipartite graph
F = (A ∪ B,E(F )) with A = V (Gn+1), B = ⋃

v∈A L(v) and let uc ∈ E(F ) if
and only if c ∈ L(u). Observe that Gn+1 has an L-list-coloring if and only if
there is a matching in G that saturates A. To show this, we prove that the
Hall’s Condition holds, i.e. for any X ⊆ A, |NF (X)| ≥ |X|. If X = ∅, the
condition holds trivially. If 1 ≤ |X| ≤ n+ 1, then the condition holds since for
any v ∈ X

|NF (X)| ≥ |NF (v)| = |L(v)| = n+ 1.
If n + 1 < |X| ≤ 2(n + 1), then X must contain two vertices u,w that are
non-adjacent in Gn+1. By our assumption, L(u) ∩ L(w) = ∅, thus

|N(u) ∪N(w)| ≥ 2(k + 1).

It follows that |N(X)| ≥ |N(u) ∪N(w)| ≥ 2(k + 1) ≥ |X|.
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Alternative proof. We proceed similarly to the first proof until Case 2: If Case 2 holds,
let W ⊆ V (Gn+1) be maximal such that H = Gn+1[W ] is L-list-colorable. If H = Gn+1
we are done, so assume for the sake of contradiction that H is a proper subgraph of
Gn+1. Then there exists v0 ̸∈ V (Gn+1) \ W . Let φ be an L-list coloring of H with
minimum |S|, where

S := {v ∈ W | φ(v) ∈ L(v0)} .
Furthermore, let L(v0) = {c1, . . . , cn+1}. As W is maximal, we know that for all i ∈
[n+ 1] there exists a v ∈ W such that φ(v) = ci. Hence, |S| ≥ n+ 1. By the pigeonhole
principle, there must therefore be an i ∈ [n + 1] such that φ(ai), φ(bi) ∈ L(v0). As
L(ai) ∩ L(bi) = ∅, we have |L(ai) ·∪L(bi)| = 2(n+ 1).
Since |W | < |V (Gn+1)| = 2(n + 1), there exists a color c ∈ L(ai) ·∪L(bi) that is not in
the image of φ, in particular not in L(v0). W.lo.g. let c ∈ L(bi). Define a new coloring

φ′ : W →
⋃

v∈W

L(v), v 7→
{
c, v = bi

φ(v), otherwise.

By the choice of c, this is also an L-list coloring of H. However, we see that∣∣{v ∈ W | φ′(v) ∈ L(v0)
}∣∣ = |S| − 1.

This contradicts the choice of φ.

Long, constructive proof. We proceed similarly to the first proof until Case 2: Choose
x ∈ L(an+1) and y ∈ L(bn+1). Using x and y, define for all v ∈ V (Gn)

L′(v) :=
{
L(v) \ {x, y} , |L(v) ∩ {x, y}| ≤ 1
L(v) \ {x} , otherwise.

Note that |L′(v)| ≥ n for all v ∈ V (Gn) as we remove at most one element of each vertex’
list. So, applying the induction hypothesis on Gn+1[V (Gn)] ≃ Gn, there exists a coloring
c′ with c′(v) ∈ L′(v) ⊆ L(v) for all v ∈ V (Gn). Note that each color is assigned at most
once: The only vertex that ai (bi) is not adjacent to in Gn is bi (ai), so only they may
share a color. But that can’t be the case as L(ai) ∩L(bi) = ∅. Thus, each of the vertices
in V (Gn) is assigned a unique color and |U | = 2n for U := {c′(v) : v ∈ V (Gn)}. Keep in
mind that because of L(an+1) ∩ L(bn+1) = ∅, we have |L(an+1) ∪ L(bn+1)| = 2(n + 1).
Therefore, M := (L(an+1) ∪ L(bn+1)) \U contains at least two elements. x must be one
of those elements, as we have removed x from every list in L′. We distinguish two cases
on L(bn+1) ∩M .
Case 2.1: L(bn+1) ∩M ̸= ∅. Let y′ ∈ L(bn+1) ∩M . Then,

c : V (Gn+1) → N, v 7→


x, v = an+1

y′, v = bn+1

c′(v), otherwise

defines a proper L-coloring as c′ is a proper L′-coloring that doesn’t use
x ∈ L(an+1) and y′ ∈ L(bn+1).
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Case 2.2: L(bn+1) ∩M = ∅. Let the other color in M be x′ ̸= x. As L(bn+1) ∩M = ∅,
we must have x′ ∈ L(an+1) and y ∈ U . Now, by our previous observation,
there must be exactly one vertex w ∈ V (Gn) such that L′(w) ∋ c′(w) = y.
But for y ∈ L′(w), we must have that {x, y} ⊆ L(w). Hence, define

c : V (Gn+1) → N, v 7→


x′, v = an+1

y, v = bn+1

x, v = w

c′(v), otherwise.

We have that c(v) ∈ L(v) for all v ∈ V (Gn+1) as c′ is a proper L′-coloring,
x′ ∈ L(an+1), y ∈ L(bn+1) and x ∈ L(w). It is also a proper coloring, as
every vertex has a distinct color.

Thus, Gn+1 is L-colorable and ch(Gn+1) = n+ 1 as L is arbitrary.

Exercise 3 (Extra Credit Version)

Every directed graph without odd directed cycles has a kernel.8

Proof. Let D be a directed graph without odd directed cycles. W.l.o.g. is D non-empty.
We will do an induction on the number of vertices n = |V (D)|. The claim is trivial for
n = 1. So, consider n > 1.

Case 1: D is strongly connected. Let v ∈ V (D) be an arbitrary vertex in D and let U
be the set of vertices u such that there is an even directed u-v-walk. Clearly,
as for every vertex w ∈ V (D − U) there exists an odd w-v-walk W , for the
vertex u following w in W there exists an even directed u-v-walk. So, for every
w ∈ V (D − U) there exists u ∈ U such that wu ∈ A(D).
Furthermore, U is independent: Assume not and xy ∈ A(D) for x, y ∈ U . Let
Wx and Wy be even directed walks from x to v and y to v respectively. As D
is strongly connected, there exists a directed v-x-walk W . If W were odd, Wx

and W would induce a closed directed walk of odd length that in particular
would contain an odd directed cycle. � So, W must be an even directed walk.
But then tracing W , xy and then Wy would induce a closed directed walk of
odd length again. �

Case 2: D is not strongly connected. Let C be a strongly connected component in
D such that no vertex v ∈ V (C) has an outgoing edge to a vertex outside
of C. Note that C exists as the graph resulting from contracting all strongly
connected components is a directed acyclic graph. The component correspon-
ding to a sink of that resulting graph may then be chosen as C. Now, by
applying Case 1 on C, we get a kernel Û for C. Moreover, by applying the

8See page 133 in Diestel’s Graph Theory.
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induction hypothesis on the graph D′ where we delete Û and all predecessors
of Û9, we get a kernel U ′ for D′. Lastly, set U := Û ∪ U ′.
By construction, U is then a kernel of D: Indeed, U is independent, as by the
choice of C there are no edges of the form uv with u ∈ Û and v ∈ U ′, and as
D′ contains all vertices of D that are neither in Û nor are a predecessor of a
vertex in Û , there are also no edges of the form vu with u ∈ Û and v ∈ U ′.
Furthermore, every vertex v ∈ V (D − U) has an outgoing edge to a vertex in
U due to the fact that U ′ and U are kernels of their respective subgraphs of D.

This shows the claim.

Remark. One could also proceed in the induction step in a slightly different way: As D
is not strongly connected, there is a directed cut. If the corresponding vertex partition
is V (D) = A ·∪B, where the edges from the cut go from A to B, we can first apply
induction to get a kernel Û of B, then remove the vertices from Û and its predecessors
and again find by induction a kernel U ′ of that graph. Then, U = Û ·∪U ′ is again a
kernel.
Lastly, the “standard task” was to show the existence of a kernel in a directed acyclic
graph which can easily be done by iteratively adding the sinks to the resulting kernel,
afterwards removing them together with their predecessors, and then iterating this until
the graph is empty.

Exercise 4

(i) Every orientation of a bipartite graph has a kernel.

Proof. Let G be a bipartite graph. As every orientation D of G is a directed
graph without odd directed cycles, it immediately follows from Exercise 3 that
D has a kernel.

(ii) K2,4 is not 2-list-colorable.

Proof. Label the vertices such that the partition classes are A = {a1, a2} and
B = {bi | i ∈ [4]}. Let L(a1) = {1, 2} , L(a2) = {3, 4} and assign every list
in M := {{x, y} | x ∈ {1, 2} , y ∈ {3, 4}} to one b ∈ B. This is possible since
|M | = |{1, 2} × {3, 4}| = 4.
Observe that K2,4 is not L-colorable: Suppose c were a proper L-coloring.
Regardless of the choice of i = c(a1) ∈ {1, 2}, there are two j, k ∈ [4], j ̸= k, such
that bj and bk have as lists {i, 3} and {i, 4} respectively. As a2bj , a2bk ∈ E(K2,4),
c could not be a proper L-coloring. �

So, as K2,4 is not L-colorable, it is in particular not 2-list-colorable.

9As in all vertices with an outgoing edge to a vertex in Û .
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Sheet 5

Exercise 1

The complement of any bipartite graph is perfect.

Proof. Let G be a bipartite graph with parts X,Y . Since any induced subgraph of
the complement of a bipartite graph is the complement of a bipartite graph (or empty
graph), it suffices to show that χ(G) = ω(G). As χ(H) ≥ ω(H) for any graph H, we
only need to show χ(G) ≤ ω(G).
Recall Kőnig’s Theorem: If G is bipartite, then the size of a smallest vertex cover of G
equals the size of a largest matching in G. Let U be a smallest vertex cover of G and let
UX = U ∩X, UY = U ∩ Y . There are no edges between X − UX and Y − UY . So, in G
there is a clique of size

(|X| − |UX |) + (|Y | − |UY |) = n− |U | =⇒ ω(G) ≥ n− |U | ,

where n = |V (G)|. By Kőnig’s Theorem, there is a matching M of size |U | in G.
We need to show that χ(G) ≤ n − |M |: Indeed, if e1, . . . , e|M | denote the edges of M ,
then we get a coloring of G by coloring the endpoints of ei with i for i = 1, . . . , |M | and
coloring the remaining vertices with colors {|M | + 1, . . . , n− |M |}. Thus,

χ(G) ≤ n− |M | = n− |U | ≤ ω(G).

Alternative proof. Let G be a bipartite graph with parts X,Y . Again, it suffices to
show that χ(G) ≤ ω(G). As κ(G) = χ(G) and α(G) = ω(G), where κ(G) denotes the
clique covering number and α(G) the independence number of G, this is equivalent to
κ(G) ≤ α(G).
So, consider a clique covering C of G. As ω(G) = 2, C is of smallest size if and only if it
contains a largest matching M of G, where the remaining vertices would be covered by
K1’s. Thus, κ(G) = n− |M | where n = |V (G)|. By Kőnig’s Theorem, there is a vertex
cover U of size |M |. It follows that V \U is an independent set. Indeed, otherwise there
exists an edge that is not covered by U . Hence, κ(G) ≤ n− |M | ≤ α(G).

Remark. The result also directly follows from the Weak Perfect Graph Theorem, but
that’s not the point.

Exercise 2

Remark. A graph is called a comparability graph if there exists a partial ordering of its
vertex set such that two vertices are adjacent if and only if they are comparable.

Every comparability graph is perfect.

Constructive proof. Let G be a comparability graph, let ≤ denote the partial ordering
on the vertex set and let < denote the strict partial order dervied from ≤.
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First, note that by simply restricting the partial order on the vertex set of the induced
subgraph of G, we get a desired partial order on the induced subgraph. So, as induced
subgraphs of comparability graphs are again comparability graphs, it suffices to show
that χ(G) = ω(G).
Enumerate the vertices V = {v1, . . . , vn} in such a way that vivj ∈ E(G) =⇒ i < j.10

This is possible as the orientaion of G, where we orient uv ∈ E(G) to u⃗v if u < v, is a
directed acyclic graph. Indeed, if it contained a directed cycle w1, . . . , wm, w1, we would
have by the transitivity of ≤ that we oriented w1wm to ⃗w1wm. �

To generate an N-coloring φ of G, we set φ(vj) = max {φ(vi) | i < j, vi < vj} + 1 for
j = 1, . . . , n, where max ∅ := 0. Note that this is a proper coloring: If vivj ∈ E(G) with
w.l.o.g. i < j, then by the definition of φ(vj), we must have φ(vj) > φ(vi).
Now, let m denote the number of colors used by φ. There must then exist a vertex vim

with φ(vim) = m. Again, by the construction of φ, there must exist a vertex vim−1 < vim

such that φ(vim−1) = m − 1. In general, if for m ≥ k > 1 we have a vertex vik
with

φ(vik
) = k, then by the construction of φ there must exist ik−1 < ik such that vik−1 < vik

and φ(vik−1) = k − 1.
Thus, we can construct a chain C = vi1 < · · · < vim . And as all of them are pairwise
comparable, C induces a clique of size m in G. As we always have χ(G) ≥ ω(G), we get

χ(G) ≤ m ≤ ω(G) ≤ χ(G) =⇒ χ(G) = ω(G).

Remark. In the language of partial orders, the statement is actually an equivalent
formulation for Mirsky’s Theorem. Funnily enough, someone in the problem class used
the dual theorem to Mirsky’s Theorem, Dilworth’s Theorem.

Alternative proof. Let G,≤, < be as in the first proof and H ⊆ G be an induced subgraph
of G. As two vertices are adjacent if and only if they are comparable, we see that

• α(H) is the size of a greatest antichain (with respect to ≤H),
• ω(H) is the size of a greatest chain (with respect to ≤H).

Dilworth’s Theorem now states that the minimum number m such that V (H) can be
partitioned into m chains is exactly the size of a greatest antichain, i.e. α(H).
So, as each chain is at most of size ω(H), we get

α(H) = m ≥ |V (H)|
ω(H) =⇒ α(H) · ω(H) ≥ |V (H)| .

So, by Theorem 5.5.6 / Lovász’s characterization for perfect graphs, G is perfect.

Elementary proof. As in the first proof, we know that it suffices to show that χ(G) =
ω(G). Fix the orientation on G given by the partial order.
We will now proceed by induction on m = |E(G)|: If m = 0, then G is empty and the
statement is clear.

10In other words, we are topologically sorting the vertices.
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Now, consider m > 0. Let S be the set of sources of G. By induction, χ(G − S) =
ω(G − S). Moreover, as the set of sources, S is independent. Furthermore, every
maximum clique in G must contain one vertex (and due to the independence exactly one)
of S, otherwise the clique could be enlarged. Thus, ω(G) = ω(G−S)+1 = χ(G−S)+1.
But at the same time, we can take a χ(G − S)-coloring of G − S and add S as the
(ω(G− S) + 1)-th color class. So, ω(G) ≥ χ(G), thus ω(G) = χ(G).

Exercise 3

The line graph L(G) is perfect if and only if all odd cycles in G are triangles.

Proof. We first show the “if”-part by contraposition: Assume that G contains an odd
cycle C = v1, . . . , vk, v1 that is not a triangle. Then consider

H := L(G)[{v1v2, . . . , vk−1vk, vkv1}].

As all the vertices v1, . . . , vk are in particular pairwise distinct, we see that H is an
induced odd cycle of length k > 3 in L(G) where in particular χ(H) = 3 > ω(H) = 2.
So, L(G) is not perfect.
For the “only if”-direction, let all odd cycles in G be triangles. First note that induced
subgraphs H of L(G) are line graphs on the corresponding subgraph of G with V (H)
as edge set. However, as all odd cycles in subgraphs of G are also odd cycles in G
itself, it suffices to show that χ(L(G)) = ω(L(G)). As the other inequality is trivial and
χ′(G) = χ(L(G)), we would be done by showing χ′(G) ≤ ω(L(G)).
To do this, note that ∆(G) ≤ ω(L(G)) as the edges incident to a vertex with maximum
degree induce a clique in L(G). Let us first cover the case where G is 2-connected:
If G is bipartite, then we know by Kőnig’s Line Coloring Theorem that

χ′(G) = ∆(G) ≤ ω(L(G)). ✓

Now, consider the case where G is not bipartite. Then G must contain a triangle
C = v1v2v3v1. We will show that G is either K4, or a union of n ∈ N “overlapping
triangles” such that

V (G) = {x, z, y1, . . . , yn} and E(G) = {x, z} ∪ {xyi | i ∈ [n]} ∪ {yiz | i ∈ [n]} .

As G is 2-connected, we can consider the (proper) ear decomposition G1, G2, . . . , Gl of G
starting with C11: If G has no ears, G would be the union of one “overlapping triangle”.
If G has ears, let P1 be the “first ear” and let {vj , vk} = V (P1) ∩ V (C). As vj and vk

split C in an even and an odd segment of length 2 and 1 respectively, P1 must be a
path of length 2. Indeed, if it were an odd path (and thus of length 3 as C is a clique),
we would get an odd cycle that is not a triangle. Similarly, if P1 were an even path of
length at least 4, then we would again get an odd cycle that is not a triangle. �

11Here, we let Gi+1 be the graph resulting from adding an ear to Gi.
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So, if G has ears, P1 must be as above and G2 would be a union of two overlapping
triangles. From now on, we will hence use the notation as established for unions of
overlapping triangles.
Now, assume that the ear decomposition contains a “second ear” P2. If P2 has endpoints
y1, y2, then P2 is of length 1, as otherwise P2 would induce with either y1zy2 or y1xzy2
an odd cycle of length greather than 3. In that case, G3 is isomorphic to K4.
If P2 has endpoints x, z, then by our argumentation above and using that G2[{x, y1, z}]
is a triangle, we see that P2 must then be a path of length 2. So, G3 would be the union
of three overlapping edges.
Lastly, note that P2 can’t have one endpoint in {x, z} and one endpoint in {y1, y2}.
Indeed, w.l.o.g. consider the case where the endpoints are x, y1. As G2[x, y1, z] is a
triangle, we get by our argumentation above that P2 must be of length 2. But then
xP2y1zy2x is an odd cycle of length 5. �

Now, in the case where G3 ≃ K4, we actually have G = G3: Let V (G3) = {a, b, c, d}. If
P3 were a “third ear” with endpoints a, b, then aP3bcda is an odd cycle of length greater
than 5 if P3 is even. � If P3 is of odd length, then it must be at least of length 3, as
ab ∈ G3. But then aP3bca is an odd cycle of length greater than 3. �

So, consider the case that G3 is the union of 3 overlapping triangles. We will show that
in this case Gk is the union of k overlapping triangles for all 3 ≤ k ≤ l. We do so by
doing induction on j with k = 3 as induction base. So, consider Gk+1 and let Pk be the
k-th ear.
As Pk generally must have endpoints in {x, yi, yj , z} for some i, j ∈ [k], i ̸= j, it follows
directly that Pk could only be an x-z-path of length 2 as Gk[{x, yi, yj , z}] is a union of
two overlapping triangles. Thus, Gk+1 the union of k + 1 overlapping triangles.
Now, in both cases we have that χ′(G) ≤ ω(L(G)): As K4 is an even clique, we have
χ′(G) = 3 = ∆(G) ≤ ω(L(G)) if G ≃ K4.
If G is the union of k overlapping triangles, ∆(G) = k + 1. If k = 1, we have χ′(G) =
3 = ω(L(G)) as then G ≃ K3 and L(G) ≃ K3. For k > 1, we can color xz with k + 1,
xyi with i and yiz with i+ 1 for i ∈ [k − 1], and xyk with k and ykz with 1.
This shows that χ′(G) ≤ k + 1 = ∆(G) ≤ ω(L(G)).
Finally, for the general case we do an induction on n = |V (G)|: If n ≤ 2, the claim is
clear. So, consider n > 3. If G is disconnected, we can apply induction on each of the
connected components C1, . . . , Cm and would get

χ′(G) = max
{
χ′(Ci) | i ∈ [m]

}
= max

{
ω(L(Cj)) | i ∈ [m]

}
= ω(L(G)).

If G is 2-connected, the claim follows from the above.
So, let G have vertex-connectivity 1 and let v be a cutvertex and G1, G2 ⊆ G be
connected subgraphs formed by unions of blocks of G such that V (G1) ∩ V (G2) = {v}.
W.l.o.g. ω1 := ω(L(G1)) ≤ ω(L(G2)) =: ω2. Applying induction, we get that there are
edge colorings φ1, φ2 of G1, G2 using colors [ω1], [ω2] respectively.
Permute the colors of φ1 and φ2 such that φ1({e | ve, e ∈ E(G1)}) = [degG1(v)] and

φ2({e | ve, e ∈ E(G2)}) =
{
ω2 − (degG2(v) − 1), . . . , ω2

}
.
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If degG1(v) + degG2(v) = degG(v) ≤ ω2, so in particular ω(L(G)) = ω2, then φ with
φ
∣∣
E(Gi)

= φi for i ∈ [2] defines an ω(L(G))-edge coloring of G.
Otherwise, degG(v) = ω(L(G)). Consider

φ : E(G) → [ω(L(G))], e 7→
{
φ1(e), e ∈ E(G1)
φ2(e) + (ω(L(G)) − ω2), e ∈ E(G2).

This defines an ω(L(G))-edge coloring of G.
Hence, we get χ′(G) ≤ ω(L(G)) in both cases. This completes the proof.

Alternative proof. By the arguments of above, it suffices to show that if G does not
contain odd cycles of length at least 5, then χ(L(G)) = ω(L(G)).
To show that, assume the opposite and let G = (V,E) be a counterexample for which |E|
is minimal. We must have ∆(G) ≥ 3. Indeed, if ∆(G) = 0 then L(G) would be empty
and hence the equality would hold; if ∆(G) = 1, then G contains disjoint K2’s and K1’s,
so L(G) would be an empty graph12, hence χ(L(G)) = 1 = ω(L(G)); if ∆(G) = 2, then
G is the union of cycles (and contains at least one cycle) and paths, so – as G contains
no odd cycles greater than 3 – χ(L(G)) = 2 = ∆(G) = ω(L(G)) if G is bipartite and
χ(L(G)) = 3 = ω(L(G)) otherwise.
So, ∆(G) ≥ 3. Let e = uv ∈ E such that degG(v) < ∆(G) unless G is regular. Then we
choose e arbitrarily. As G− e is not a counterexample, we can fix a proper edge coloring
on G − e with ω(L(G − e)) many colors. Note that k := ω(L(G)) = ω(L(G − e)), as
otherwise we could just extend the coloring to G by assigning e the “new” color. Also,
k ≥ ∆(G) ≥ 3. Now, in the coloring of G − e there is a color “missing” at u and v
respectively. If it were the same color, we could again extend the coloring to G. So, let
the color “missing” at u be red and at v be blue.
We will now show that G is actually not regular: Assume otherwise. As we have ∆(G) ≥
3, we know that ∆(G) = ω(L(G)). Indeed, as the edges incident to a vertex always
induce a clique in L(G), ∆(G) ≤ ω(L(G)) holds. For the other direction, the case where
ω(L(G)) = 3 directly follows and for ω(L(G)) > 3 we observe that a clique in L(G)
of size greater than 3 always corresponds to a star in G of the same size. Hence, the
coloring on G − e must use exactly ∆(G − e) = ∆(G) colors, meaning that all vertices
apart from u and v have no color missing while u and v have exactly one color missing.
Therefore, as ∆(G) ≥ 3, there must be another color class, say green, that is different
from red and blue, which induces a perfect matching in G. In particular, |V (G)| must
be even. However, we also know that the red color class induces a matching that misses
exactly one vertex, namely u. That implies that |V (G)| is odd. �

So, we are in the case where degG(v) < ∆(G). So, apart from blue, v must be missing
another color, say green. Consider a longest alternating path P starting at v and an
edge colored red at v that alternates between the colors red and green. By maximality,
the last vertex must miss either red or green. If P doesn’t end in u, we can just switch
the colors on that path from red to green and green to red such that red is now also
missing at v. So, we could extend the coloring to G in that case. �

12In the sense that E(L(G)) = ∅.
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So, P must end in u with a green edge.13 In particular, P must be of even length. If P
has length greater than 2, then together with uv it would form an odd cycle of length
greater than 3 in G. � So, P must have length two and the unique vertex w ∈ V (P ) in
the interior of P is adjacent to u and v with uw colored green and wv colored red.
However, if we were to repeat this argument but for blue instead of green, we would get
a contradiction as the w for blue, uniquely determined as the other endpoint of the one
edge incident to v colored red, is the same w for green, meaning that uw needs to be
colored blue and green at the same time.

Remark. For the “only if”-direction, one could also use the Strong Perfect Graph
Theorem: If L(G) is not perfect, then L(G) contains Ck or Ck for some odd k > 3.
If k = 5, we have C5 ≃ C5 and that C5 would induce a C5 in G. If L(G) contains Ck

for some odd k > 5, then, again, it would induce a Ck in G. Lastly, L(G) actually can’t
contain a Ck for odd k > 5: Let e1, . . . , ek be the vertices of Ck such that ei is not
adjacent to ei+1. Then e1 and e2 are not adjacent, thus they are independent edges in
G. As NCk

(e1) ∩ NCk
(e2) ⊇ {e4, e5, e6} and e4, e5 are not adjacent, we have that the

edges e1, e4, e2, e5 (in that order) induce a C4 in G. Now, e6 needs to be an edge that is
adjacent to e1 and e2 which is non-adjacent to e4 and not equal to e5. Clearly, such an
edge can’t exist. Hence, we actually covered all cases and are done.

Exercise 4

Every bridgeless multigraph14 G has a Z/kZ-flow for some integer k.

Proof. W.l.o.g. assume that G is connected, hence 2-edge connected. Again, it suffices
to show that G has a k-flow for some k ∈ N, or (dropping the parameter) a nowhere-zero
Z-flow. For the sake of contradiction, assume that G doesn’t have such a Z-flow. Let
φ be a Z-flow such that |S(φ)| is minimum, where S(φ) is the set of edges e such that
φ(e) = 0. Note that φ exists as φ ≡ 0 is always a valid Z-flow.
Now, consider xy ∈ S. As G is 2-edge connected, there is a y-x-path P in G −
xy. In other words xyP forms a cycle C. Fix an orientation on C and let k :=
max {|φ(e)| | e ∈ E(C)}. Let φ′ be the Z-flow that has flow value k + 1 for the edges in
the orientation of C, −(k+ 1) for the edges in the opposite orientation of C, and assigns
zero to every other edge. Clearly, this defines a Z-flow. In particular, φ+ φ′ is a Z-flow
that – by construction – assigns a non-zero value to each edge in C and each edge that
had non-zero value in φ. So, as e ∈ S(φ) \ S(φ+ φ′), |S(φ+ φ′)| < |S(φ)|. �

Remark. The 6-Flow Theorem shows that k = 6 can be chosen for all such multigraphs.
13Then, our argument above doesn’t work as green would be missing at u after the switch.
14Note that by our convention multigraphs don’t have loops.
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Sheet 6

Exercise 1

For every graph with a spanning cycle the flow number is at most 4. This bound is
tight.15

Proof. Let G be a graph with a spanning cycle C. By Corollary 6.3.2, it suffices to show
that G has a Z2

2-flow. To construct such a flow φ, we proceed as follows:
• Let φ′ be the Z2-circulation that assigns all (directed) edges of C the value 1 and

all other edges 0.
• For each edge e ∈ E(G) \ E(C), e closes two cycles with C. Fix for each such e

one of those cycles Ce and let φe be the Z2-circulation that is only non-zero on Ce

with value 1 for each directed edge in Ce. Then, φ′′ := ∑
e∈E(G)\E(C) φe defines a

Z2-circulation that is non-zero for each e ∈ E(G) \ E(C).
With φ′ and φ′′ at hand, let φ := (φ′, φ′′). This defines a Z2

2-flow.
Lastly, we show that the bound is tight: Consider K4, which obviously has a spanning
cycle. However, due to Proposition 6.4.2 and 6.4.5 (ii) K4 has a flow number of 4.

Exercise 2

There exists a graph G and a bridgeless subgraph H ⊆ G such that G has a strictly
smaller flow number than H.

Proof. Take G = Kn for some n > 4 and H = K4. As we have seen in the previous
exercise, K4 has a flow number of exactly 4. Furthermore, Proposition 6.4.1 and
Proposition 6.4.3 state that the flow number of G is at most 3 < 4.

Remark. A harder question is asked in Problem 6.19 of Diestel’s Graph Theory:

Find bridgeless graphs G and H = G− e such that 2 < φ(G) < φ(H).

This problem is left as an exercise for the bored reader.

Exercise 3

The flow polynomial of K4 is p(x) = x3 − 3x2 + 2x.

Proof. First, note that the flow polynomial is invariant under subdivisions. Indeed, if H
is a group, e is an edge of a graph G and G′ is the resulting graph from G by subdividing
e, then due to the flow conservation at the new vertex of G′, it is apparent that the
(nowhere-zero) H-flows of G are in a one-to-one correspondence to the H-flows of G′.
As the flow polynomial is by Theorem 6.3.1 constructed to count exactly that quantity,
we have that G and G′ have the same flow polynomial.

15In other words, the flow number of a Hamiltonian graph is at most 4.
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Figure 3: Scheme for the deletion-contraction formula

In particular, the flow polynomial of the graph with exactly two parallel edges and the
flow polynomial of cycles is the same as the flow polynomial of a loop, which is given by
x. In general, we know from Theorem 6.3.1 that if G has exactly m loops as edges, its
flow polynomial is xm.
Finally, by applying the deletion-contraction formula established in Theorem 6.3.1, where
we proceed as in Figure 3, we see that the flow polynomial of K4 is

p(x) = x3 − x2 + x− 2x2 + x = x3 − 3x2 + 2x.

Remark. Just for fun, I wrote some Haskell code to get the flow polynomial for a general
graph, which is represented by a list of its edges.

replace :: Eq a => a -> a -> a -> a
replace a b x = if x == a then b else x

mapTuple :: (a -> b) -> (a, a) -> (b, b)
mapTuple f (a1, a2) = (f a1, f a2)

contract :: Eq a => (a, a) -> [(a, a)] -> [(a, a)]
contract p ps = map (mapTuple $ replace (fst p) (snd p)) ps
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tutte m [] = 1:(take (m-1) [0,0..])
tutte m (p:ps)
| (fst p == snd p) = 0:(tutte (m-1) ps)
| otherwise = zipWith (-) (tutte m $ contract p ps) (tutte m ps)

tutte_init l = tutte (1 + length l) l

clique 0 = []
clique 1 = []
clique n = clique (n-1) ++ [(i, n) | i <- [1..(n-1)] ]

biclique m n = [(i, j + m) | i <- [1..m], j <- [1..n]]

main = putStrLn (show $ tutte_init $ clique 4)

Exercise 4

A plane triangulation is 3-colorable if and only if all its vertices have even degree.

Proof. Let G be a plane triangulation. Clearly, as K3 is trivially 3-colorable and also
2-regular, the statement is true for G = K3. So, consider the case |V (G)| > 3. It is
a known fact that G is then 3-connected. In particular, G∗, the dual of G, is a proper
plane graph that is cubic since G is a plane triangulation. Indeed, G∗ has no loops as
G has no bridges. Furthermore, parallel edges in G∗ would imply that two faces share
at least two edges in G which would then form a cut. However, G has no such cuts as
it is 3-connected. It is also not hard to see that G∗ is 2-connected.16 Indeed, if f is a
face in G, then the faces that share with f a vertex induce a cycle in G∗ according to
the clockwise order of the faces. So, in G∗, removing f would not disconnect the graph.
Now, as χ(G) ≥ ω(G) ≥ 3, we know by Theorem 6.5.3 that G is 3-colorable if and only
if G∗ has flow number 3. By Proposition 6.4.2, we know that G∗ has flow number 3 if
and only if it is bipartite. So, it suffices to show that G∗ is bipartite if and only if all of
G’s vertices have even degree.
This is also not too hard to see: For now, we will call G even if all of its vertices have
even degree. As G’s vertices are in one-to-one correspondence to the faces of G∗, we see
that G is even if and only if every face in G∗ is bounded by an even cycle. By a previous
exercise17, we know that G∗ is bipartite if and only if every face is bounded by an even
cycle. This completes the proof.

Remark. One can also show directly the “if”-direction of the statement: If v ∈ V (G) is a
vertex of odd degree, then the neighboring vertices around v must form an odd cycle due
to G being a plane triangulation and would therefore form an odd wheel together with
v. Hence, as we know that odd wheels have chromatic number 4, G is not 3-colorable.

16Note that the dual of any plane graph is connected.
17See Exercise 3 on Sheet 3 or Problem 24 in Chapter 4 of Diestel’s Graph Theory.
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Sheet 7

Exercise 1

Our definition of regular pair in class is equivalent to the one given in Diestel’s Graph
Theory.

Proof. We first go from our definition to the one given in the textbook: Let (X,Y ) be
an (ε, d)-regular pair according to our definition in class. For one, we get

|eG(X,Y ) − d |X| |Y || ≤ ε |X| |Y | =⇒ |d(X,Y ) − d| ≤ ε.

Now, consider X ′ ⊆ X,Y ′ ⊆ Y with |X ′| ≥ γ |X| , |Y | ≥ γ |Y | for some 1 ≥ γ > 0.
It follows that∣∣d(X ′, Y ′) − d(X,Y )

∣∣ ≤
∣∣d(X ′, Y ′) − d

∣∣+ |d− d(X,Y )| ≤ ε
|X| |Y |
|X ′| |Y ′|

+ ε

≤ ε

(
1 + γ2

γ2

)
≤ 2ε
γ2 ,

where we applied the regularity property and triangle inequality. Now, to go to regularity
as defined in the textbook, we set

2ε
γ2 = γ =⇒ γ = 3√2ε.

So, we get that (X,Y ) is a δ = 3√2ε-regular pair as by the definition given in the
textbook.
For the other direction, let (X,Y ) be a δ-regular pair for some 0 < δ ≤ 1 according to
the definition in the textbook. Then we get for d := d(X,Y ) that∣∣eG(X ′, Y ′) − d

∣∣X ′∣∣ ∣∣Y ′∣∣∣∣ =
∣∣X ′∣∣ ∣∣Y ′∣∣ ∣∣d(X ′, Y ′) − d

∣∣ ≤ δ
∣∣X ′∣∣ ∣∣Y ′∣∣ ≤ δ |X| |Y |

for X ′ ⊆ X,Y ′ ⊆ Y with |X ′| ≥ δ |X| , |Y ′| ≥ δ |Y |. If |X ′| < δ |X|, then∣∣eG(X ′, Y ′) − d
∣∣X ′∣∣ ∣∣Y ′∣∣∣∣ ≤ max

{
δ |X|

∣∣Y ′∣∣ , d · δ |X|
∣∣Y ′∣∣} ≤ δ |X| |Y | .

One can arrive at the same inequality for |Y ′| < δ |Y | by symmetry. So, (X,Y ) is a (δ, d)-
regular pair as according to our definition. Hence, both definitions are equivalent.

Exercise 2

The Triangle Counting Lemma is not true if only one of its three parts is regular.

Proof. Let n ∈ N be even. Consider the tripartite graph G with V (G) = V1 ·∪V2 ·∪V3
with Vi =

{
v1

i , . . . , v
n
i

}
and

E(G) =
{
vi

1v
j
2 | i, j ∈ [n]

}
∪
{
vi

1v
j
3 | i ∈ [n], j ∈

[
n

2

]}
∪
{
vi

2v
j
3 | i ∈ [n], n2 + 1 ≤ j ≤ n

}
.
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Note that
d1,2 = 1, d1,3 = d2,3 =

n · n
2

n2 = 1
2

and that (V1, V2) is (ε, d1,2)-regular for every ε > 0 as

eG(X,Y ) = |X| |Y | =⇒ |eG(X,Y ) − |X| |Y || = 0 < ε.

Furthermore, due to the adjacencies of the vertices in V3, G is triangle-free. On the
other hand,

d1,2d1,3d2,3 |V1| |V2| |V3| = n3

4 .

The Triangle Counting Lemma is true if two of its three parts are regular.

Proof. We mimick the proof of the General Counting Lemma: Let G = (V1 ·∪V2 ·∪V3, E)
be tripartite such that (V1, V2), (V2, V3) are (ε, d1,2)-regular and (ε, d2,3)-regular for some
d1,2, d23 ∈ [0, 1]. Set

d1,3 = d(V1, V3) = e(V1, V3)
|V1| |V3|

,

where we may assume that |V1| > 0 < |V3| as otherwise G would be triangle-free (and
not properly tripartite). We will then show that the number of triangles in G is in the
interval (d1,2d2,3d1,3 ± 2ε) |V1| |V2| |V3|. In other words, choosing ε = γ/2 will suffice.
To make everything concrete, let V (C3) = {1, 2, 3}. We will proceed iteratively: Let Φ1
be the set of partite homomorphisms φ from C3 −{1, 2}−{2, 3} to G such that φ(i) ∈ Vi

for all i ∈ [3]. Clearly, we have |V2| choices for φ(2) (as its just an isolated vertex in
C3 − {1, 2} − {2, 3}) and φ(1) = a ∈ V1, φ(2) = c ∈ V3 is possible if and only if ac ∈ E.
Therefore,

|Φ1| = e(V1, V3) · |V2| = d1,3 |V1| |V2| |V3| .

Next, let Φ2 be the set of partite homomorphisms φ from C3 − {2, 3} to G such that
φ(i) ∈ Vi for all i ∈ [3]. Clearly, we have

|Φ2| =
∑

φ∈Φ1

1E(φ(1), φ(2))

=
∑

φ∈Φ1

(1E(φ(1), φ(2)) − d1,2 + d1,2)

= d1,2 |Φ1| +
∑

φ∈Φ1

(1E(φ(1), φ(2)) − d1,2) .

Now, since d1,2 |Φ1| = d1,2d1,3 |V1| |V2| |V3| as desired, we focus on bounding the latter
term. Clearly,∑

φ∈Φ1

(1E(φ(1), φ(2)) − d1,2)

=
∑

v3∈V3

∑
v1∈V1∩N(v3),v2∈V2

(1E(φ(1), φ(2)) − d1,2)
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=
∑

v3∈V3

 ∑
v1∈V1∩N(v3),v2∈V2

1E(φ(1), φ(2))

−

 ∑
v1∈V1∩N(v3),v2∈V2

d1,2


=

∑
v3∈V3

(e(V1 ∩N(v3), V2) − d1,2 |V1 ∩N(v3)| |V2|) ,

so the triangle inequality and ε-regularity of (A,B) imply∣∣∣∣∣∣
∑

φ∈Φ1

(1E(φ(1), φ(2)) − d1,2)

∣∣∣∣∣∣ ≤
∑

v3∈V3

|e(V1 ∩N(v3), V2) − d1,2 |V1 ∩N(v3)| |V2||

≤
∑

v3∈V3

ε |V1| |V2|

= ε |V1| |V2| |V3| .

Thus, |Φ2| ∈ (d1,2d1,3 ± ε) |V1| |V2| |V3|.
Lastly, let Φ3 be the set of partite homomorphisms φ from C3 to G such that φ(i) ∈ Vi

for all i ∈ [3]. Similarly to before, we see that

|Φ3| =
∑

φ∈Φ2

1E(φ(2), φ(3))

=
∑

φ∈Φ2

(1E(φ(2), φ(3)) − d2,3 + d2,3)

= d2,3 |Φ2| +
∑

φ∈Φ2

(1E(φ(2), φ(3)) − d2,3) .

Now, since d2,3 |Φ2| ∈ (d1,2d1,3d2,3 ± ε) |V1| |V2| |V3| as desired, we focus on bounding the
latter term. Clearly,∑

φ∈Φ2

(1E(φ(2), φ(3)) − d2,3)

=
∑

v1∈V1

∑
v2∈V2∩N(v1),v3∈V3∩N(v1)

(1E(φ(2), φ(3)) − d2,3)

=
∑

v1∈V1


 ∑

v2∈V2∩N(v1),
v3∈V3∩N(v1)

1E(φ(2), φ(3))

−

 ∑
v2∈V2∩N(v1),
v3∈V3∩N(v1)

d2,3




=
∑

v1∈V1

(e(V2 ∩N(v1), V3 ∩N(v1)) − d2,3 |V2 ∩N(v1)| |V3 ∩N(v1)|) ,

so the triangle inequality and ε-regularity of (B,C) imply∣∣∣∣∣∣
∑

φ∈Φ2

(1E(φ(2), φ(3)) − d2,3)

∣∣∣∣∣∣
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≤
∑

v1∈V1

|e(V2 ∩N(v1), V3 ∩N(v1)) − d2,3 |V2 ∩N(v1)| |V3 ∩N(v1)||

≤
∑

v1∈V1

ε |V2| |V3|

= ε |V1| |V2| |V3| .

Thus, |Φ3| ∈ (d1,2d1,3d2,3 ± 2ε) |V1| |V2| |V3| as desired.

Remark. Asking Professor Schacht, it became clear what kind of relaxation is allowed
in the General Counting Lemma: The General Counting Lemma goes through if none
of the non-regular pairs meet. Note that this is exactly what we used to construct a
counterexample when two of the three pairs are non-regular in G. If none of the non-
regular pairs meet, i.e. the pairs that are non-regular correspond to a matching M of
our graph F whose number of partite homomorphisms to G we want to count, then in
the induction base we take exactly those pairs and get the desired number without error.

Exercise 3

The number of partite homomorphisms of C4 in a bipartite graph G = (X ·∪Y,E) with
|E| = d |X| |Y | is at least d4 |X|2 |Y |2.

Remark. To be non-ambiguous, we try to count the number of closed walks xyx′y′x in
G such that x, x′ ∈ X and y, y′ ∈ Y .

Proof. Recall that by the Cauchy-Schwarz inequality, we have

⟨x, y⟩ ≤ ∥x∥2 ∥y∥2

for all x, y ∈ Rn, n ∈ N. In particular, if we set x = (a1/n, . . . , an/n) and y = (1, . . . , 1)
for any a1, . . . , an ∈ R, we get

1
n

n∑
i=1

ai ≤

√√√√ n∑
i=1

a2
i

n2 ·
√

12 + · · · + 12 =

√√√√ 1
n

n∑
i=1

a2
i (∗)

Now, to count the number of partite homomorphisms, let d(u, v) = |N(u) ∩N(v)|
for u, v ∈ V (G). We proceed as follows: For fixed (y, y′) ∈ Y 2, the number of such
homomorphisms containing y and y′ in that order is given by d(y, y′)2 as this is exactly
the number of choices we have for x and x′.
So, the number of homomorphisms N is given by

N =
∑

(y,y′)∈Y 2

d(y, y′)2

= |Y |2
 ∑

(y,y′)∈Y 2

d(y, y′)2

|Y |2


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(∗)
≥ |Y |2

 1
|Y |2

∑
(y,y′)∈Y 2

d(y, y′)

2

.

Observe that the inner sum counts the number of triples (x, y, y′) ∈ X × Y 2 such that
x ∈ N(y) ∩N(y′). Counting from the perspective of the vertices in X, that quantity is

∑
x∈X

deg(x)2 = |X|
(

1
|X|

∑
x∈X

deg(x)2
)

(∗)
≥ |X|

(
1

|X|
∑
x∈X

deg(x)
)2

= |X|
( |E|

|X|

)2

= d2|X| |Y |2 .

Plugging that in, we finally get

N ≥ |Y |2
(
d2 |X| |Y |2

|Y |2

)2

= d4 |X|2 |Y |2 .

Exercise 4

Let (X,Y ) be an (ε, d)-regular pair with d3 > ε > 0 and let M be a largest matching in
such a pair.

1. There are less than 3
√
ε |X| many vertices unmatched in X or 3

√
ε |Y | many vertices

unmatched in Y .
2. If m := |X| = |Y | and the minimum degree is at least dm, then (X,Y ) contains a

perfect matching.

Proof.
1. Assume otherwise. Let X ′ ⊆ X and Y ′ ⊆ Y be the set of unmatched vertices in
X and Y respectively. By assumption, |X ′| ≥ 3

√
ε|X| and |Y ′| ≥ 3

√
ε|Y |. Note that

E(X ′, Y ′) = ∅. Otherwise, there would be an edge e with two unmatched endpoints,
making M ∪ {e} a larger matching. � However, as (X,Y ) is (ε, d)-regular, we get

dε
2
3 |X| |Y | ≤

∣∣e(X ′, Y ′) − d
∣∣X ′∣∣ ∣∣Y ′∣∣∣∣ ≤ ε |X| |Y | ,

which implies d ≤ 3
√
ε, a contradiction.

2. Assume otherwise. Then M is imperfect. As M is of maximum size, there is no
M -alternating path connecting unmatched vertices. Furthermore, as |X| = |Y |,
there is at least one unmatched vertex x and y in X and Y respectively. Due to
the minimum degree condition Y ′ := N(x) and X ′ := N(y) have at least size dm.
Furthermore, all of the vertices in X ′ and Y ′ are covered by M as otherwise there
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would be an improving M -alternating path. Similarly, e(X ′, Y ′) = ∅ as otherwise
we would get an M -alternating path connecting x and y. However, as (X,Y ) is
(ε, d)-regular, we get

d3m2 ≤
∣∣e(X ′, Y ′) − d

∣∣X ′∣∣ ∣∣Y ′∣∣∣∣ ≤ εm2 =⇒ d3 ≤ ε. �

Sheet 8

Exercise 1

Let ε > 0 and let G = (V1 ·∪ . . . ·∪Vl, E(G)) be an l-partite graph and F be a graph with
V (F ) = [l]. If every bipartite pair (Vi, Vj) is (ε, di,j)-regular for some di,j ≥ 0, then∣∣∣∣∣∣|Homind(F,G)| −

∏
ij∈E(F )

di,j ·
∏

ij ̸∈E(F )
(1 − di,j) ·

l∏
k=1

|Vk|

∣∣∣∣∣∣ ≤ ε

(
l

2

)
l∏

k=1
|Vk| ,

where Homind(F,G) is the set of induced partite homomorphisms φ : V (F ) → V (G) such
that φ(i) ∈ Vi for all i ∈ [l], and ij ∈ E(F ) if and only if φ(i)φ(j) ∈ E(G).

Proof. Let H be the l-partite graph with V (H) = V (G) and for all 1 ≤ i < j ≤ l

EH(Vi, Vj) =
{
EG(Vi, Vj), ij ∈ E(F )
{uv | u ∈ Vi, v ∈ Vj} \ EG(Vi, Vj), ij ̸∈ E(F ).

By construction, Homind(F,G) = Hom(Kl, G) where we set V (Kl) = [l]. Furthermore,
note that (Vi, Vj) is (ε, di,j)-regular with respect to H for ij ∈ E(F ) as the same is the
case for G. For ij ̸∈ E(F ), (Vi, Vj) is (ε, 1 − di,j)-regular with respect to H as

|eH(U, V ) − (1 − di,j) |U | |V || = |(|U | |V | − eG(U, V )) − (1 − di,j) |U | |V ||
= |di,j |U | |V | − eG(U, V )|
≤ ε |Vi| |Vj |

holds for all U ⊆ Vi, V ⊆ Vj as (Vi, Vj) is (ε, di,j)-regular with respect to G.
The claim now follows from the usual General Counting Lemma.

Exercise 2

Remark. For a bipartite graph G = (X ·∪Y,E) and d ∈ [0, 1] we define

dev(G, d) =
∑

x0,x1∈X

∑
y0,y1∈Y

∏
i,j∈{0,1}

(1E(xi, yj) − d) .

If dev(G, d) ≤ ε |X|2 |Y |2, then (X,Y ) is ( 4
√
ε, d)-regular.
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Proof. We show the assertion through a direct calculation: Let X ′ ⊆ X and Y ′ ⊆ Y .
It follows with the Cauchy-Schwarz inequality and dev(G, d) ≤ ε |X|2 |Y |2 that(

e(X ′, Y ′) − d
∣∣X ′∣∣ ∣∣Y ′∣∣)4

=

∑
x∈X

∑
y∈Y

1X′(x)1Y ′(y) (1E(x, y) − d)

4

=

∑
x∈X

1X′(x)
∑
y∈Y

1Y ′(y) (1E(x, y) − d)

4

≤

√∑
x∈X

1X′(x)2

√√√√√∑
x∈X

∑
y∈Y

1Y ′(y) (1E(x, y) − d)

2


4

=
∣∣X ′∣∣2

∑
x∈X

∑
y∈Y

1Y ′(y) (1E(x, y) − d)

2


2

=
∣∣X ′∣∣2∑

x∈X

∑
y0,y1∈Y

1Y ′(y0)1Y ′(y1) (1E(x, y0) − d) (1E(x, y1) − d)

2

=
∣∣X ′∣∣2 ∑

y0,y1∈Y

1Y ′(y0)1Y ′(y1)
∑
x∈X

(1E(x, y0) − d) (1E(x, y1) − d)

2

≤
∣∣X ′∣∣2

√ ∑
y0,y1∈Y

1Y ′(y0)21Y ′(y1)2

√√√√√ ∑
y0,y1∈Y

(∑
x∈X

(1E(x, y0) − d) (1E(x, y1) − d)
)2


2

=
∣∣X ′∣∣2 ∣∣Y ′∣∣2 ∑

y0,y1∈Y

(∑
x∈X

(1E(x, y0) − d) (1E(x, y1) − d)
)2

=
∣∣X ′∣∣2 ∣∣Y ′∣∣2 dev(G, d)

≤ ε |X|4 |Y |4 .

Taking the fourth root, we get∣∣e(X ′, Y ′) − d
∣∣X ′∣∣ ∣∣Y ′∣∣∣∣ ≤ 4√ε |X| |Y | .

Thus, (X,Y ) is ( 4
√
ε, d)-regular.

Exercise 3

For every γ > 0 there exists δ > 0 such that for sufficiently large n every n-vertex graph
with more than ((l − 2)/(l − 1) + γ)n2/2 edges contains not only one, but even at least
δnl copies of Kl.
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Proof. Given γ > 0 set d0 = γ/4, t0 = max {l, ⌈4/γ⌉} , and

ε = min

1
2 ,
γ

8 ,
(γ

4
)(l

2)( l
2
)

+ 1

 .
Choose T0 = T0(ε, t0) as according to the Regularity Lemma and set n0 ≥ T0

δ =
(γ

4
)(l

2)

(2T0)l
(( l

2
)

+ 1
) .

Given G on n ≥ n0 vertices with more than ((l − 2)/(l − 1) + γ)n2/2 edges, apply the
Regularity Lemma with ε and t0 to obtain a partition V0 ·∪V1 ·∪ . . . ·∪Vt = V (G), where
t0 ≤ t ≤ T0. As usual, we remove xy ∈ E(G) if

1. {x, y} ∩ V0 ̸= ∅,
2. {x, y} ⊆ Vi for some i ∈ [t],
3. xy ∈ E(Vi, Vj) and (Vi, Vj) is not an ε-regular pair,
4. xy ∈ E(Vi, Vj) and d(Vi, Vj) < d0.

We get that there are at most εn2 edges of Type 1, at most

t

(
n
t

2

)
≤ n2

2t ≤ n2

2t0

edges of Type 2, at most

εt2
(
n

t

)2
= εn2

edges of Type 3, and at most (
t

2

)
d0

(
n

t

)2
≤ d0

2 · n2

edges of Type 4. Therefore, we have removed at most( 1
2t0

+ 2ε+ d0
2

)
n2 ≤ γ

n2

2

edges. So, as there are still more than (l − 2)/(l − 1)n2/2 edges left, Turán’s Theorem
implies that there exists a Kl in the remaining graph. By our choice of which edges got
removed, this implies that w.l.o.g. (Vi, Vj) is ε-regular with density at least d0 for all
1 ≤ i < j ≤ l. Hence, the Counting Lemma implies that there are at least[

d
(l

2)
0 − ε

(
l

2

)]((1 − ε)n
t

)l

≥
d
(l

2)
0 − ε

( l
2
)

(2T0)l
· nl ≥ δnl

copies of Kl as desired.
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Exercise 4

Deduce the Erdős-Stone theorem (Theorem 7.1.2) from Turán’s theorem.

Solution. We will use the Embedding Lemma. Recall that the Embedding Lemma states:

Proposition (Embedding Lemma). For all ∆ ∈ N, k ∈ N, d0 > 0 there exists ε > 0,M ∈
N such that: If

• G = (V1 ·∪ . . . ·∪Vk, E(G)) is a graph where (Vi, Vj) is (ε, di,j)-regular with di,j ≥ d0
for all 1 ≤ i < j ≤ l, and

• H = (U1 ·∪ . . . ·∪Uk, E(H)) with ∆(H) ≤ ∆ and |Vi| ≥ M |Ui| for all i ∈ [k],
then H ⊆ G.

So, let r ≥ 2, s ≥ 1, and γ > 0 where w.l.o.g. γ < 1. Set ∆ = ∆(Kr
s ) = (r − 1)s, k = r

and d0 = γ/2. From the Embedding Lemma, we get ε′ > 0 and M ∈ N. Set ε =
min {ε′, 1/2, γ/8}. Given ε and t0 = max {k, ⌈2/γ⌉}, we get from the Regularity Lemma
T0 ∈ N. Lastly, let n0 = max

{
2M · T0 · s, 2/√γ

}
.

So, let G be a graph with n ≥ n0 vertices and at least tr−1(n) + γn2 edges. From the
Regularity Lemma, we get a partition V = V0 ·∪V1 ·∪ . . . ·∪Vt where t0 ≤ t ≤ T0.
As usual, we remove xy ∈ E(G) if

1. {x, y} ∩ V0 ̸= ∅,
2. {x, y} ⊆ Vi for some i ∈ [t],
3. xy ∈ E(Vi, Vj) and (Vi, Vj) is not an ε-regular pair,
4. xy ∈ E(Vi, Vj) and d(Vi, Vj) < d0.

We get that there are at most εn2 edges of Type 1, at most

t

(
n
t

2

)
≤ n2

2t ≤ n2

2t0

edges of Type 2, at most

εt2
(
n

t

)2
= εn2

edges of Type 3, and at most (
t

2

)
d0

(
n

t

)2
≤ d0

2 · n2

edges of Type 4. Therefore, we have removed at most( 1
2t0

+ 2ε+ d0
2

)
n2 ≤ 3

4 · γn2

edges. Note that γn2/4 ≥ 1. So, as there are still more than tr−1(n) edges left, Turán’s
Theorem implies that there exists a Kr in the remaining graph. By our choice of which
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edges got removed, this implies that w.l.o.g. (Vi, Vj) is ε-regular with density at least d0
for all 1 ≤ i < j ≤ r ≤ t0. Furthermore, note that for all i ∈ [r] we have

|Vi| ≥ (1 − ε)n
t

≥ n

2T0
≥ M · s.

So, Kr
s ⊆ G by the Embedding Lemma.

Remark. Technically, the problems asks you to deduce the theorem as outlined in
Diestel, but I can’t be bothered to prove the Blow-Up Lemma, if we already did the
Embedding Lemma in class anyway.

Sheet 9

Exercise 1

For fixed l ≥ 3, the off-diagonal graph Ramsey number R(Kl,Kn) polynomial in n.

Proof. We will concretely show that for n, l ≥ 2 we have

R(Kl,Kn) ≤
(
n+ l − 2
l − 1

)
.

Then, for fixed l ≥ 3, this bound is in particular polynomial in n.
We will prove this bound inductively. For n = 2 = l, we get R(K2,K2) = 2 ≤

(2+2−2
1
)
.

So, for the induction hypothesis, consider n, l ≥ 2 with n+ l > 2 and assume that for all
n′, l′ ≥ 2 with n′ + l′ < n+ l the bound is true.
Let N = R(Kl,Kn) − 1. By definition, there is a red/blue-coloring c of KN such
that there is no red Kl nor blue Kn. Let v be an arbitrary vertex in KN , X =
{u ∈ V (KN ) | c(uv) = red} and Y = {u ∈ V (KN ) | c(uv) = blue}. By definition of c,

|X| ≤ R(Kl−1,Kn) − 1 |Y | ≤ R(Kl,Kn−1) − 1.

It follows that R(Kl,Kn) ≤ R(Kl−1,Kn) +R(Kl,Kn−1) since

R(Kl,Kn) − 1 = N = |X ·∪Y ·∪ {v}| + 1 ≤ R(Kl−1,Kn) − 1 +R(Kl,Kn−1) − 1 + 1.

Applying the induction hypothesis, we therefore get

R(Kl,Kn) ≤
(
n+ l − 3
l − 2

)
+
(
n+ l − 3
l − 1

)
=
(
n+ l − 2
l − 1

)

as desired. This concludes the proof.

Alternative proof. We will show that R(Kl,Kn) ≤ nl−1. To do that, we proceed by
induction on l: For l ∈ {1, 2}, the claim is trivial, so consider l ≥ 3 and assume the
statement holds for values smaller than l.
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Let N = nl−1 and consider an arbitrary coloring of KN . Pick any vertex v1 in KN . v1
can have at most nl−2 − 1 red, incident edges, as otherwise the corresponding vertices
would either contain a red Kl−1, forming with v1 a red Kl, or a blue Kn by the induction
hypothesis. So, set V1 to be the vertices that are adjacent to v1 via a blue edge. Observe
that |V1| ≥ N−nl−2. Inductively, given Vi, we let vi+1 ∈ Vi be arbitrary and have again,
by the same argument, that at most nl−2 −1 of the incident edges are red. In particular,
setting Vi+1 ⊆ Vi to be those vertices in Vi, that are adjacent to vi+1 via a blue edge, if
|Vi| ≥ N − i · nl−2, |Vi+1| ≥ |Vi| − nl−2 ≥ N − (i + 1) · nl−2 follows. This shows, that
we can do this procedure at least n times. Hence, if at no step a red Kl or blue Kn is
found, {v1, . . . , vn} induce a blue Kn at the end.

Exercise 2

A family F of sets is called a weak ∆-system if every two sets have intersections of the
same size and it is a ∆-system if every two sets intersect in the same set.

(i) For all integers m, k ≥ 2 there exists an M such that every family F of k-element
sets such that |F| = M contains a weak ∆-system F ′ ⊆ F with |F ′| ≥ m.

(ii) For all integers m, k ≥ 2 there exists an M such that every weak ∆-system F
of k-element sets with |F| = M contains a ∆-system F ′ ⊆ F with |F ′| ≥ m.

Elementary proof.
(i) We define

M := R(m, . . . ,m︸ ︷︷ ︸
k times

)

and let F be a family of k-element sets such that |F| = M . Let F be the vertices
of KM and color the edges with {0, 1, . . . , k − 1} such that the color of AB,
where A,B ∈ F , is |A ∩B|. By definition of M , there exists a monochromatic
clique of size at least m. The corresponding vertices then form the desired a
weak ∆-system F ′ ⊆ F of size at least m.

(ii) Consider weak ∆-systems F of k-element sets that are k′-intersecting. We show
that

M = (m− 1) ·
(
k

k′

)
suffices.18 So, let F be an arbitrary weak ∆-system of k-element sets that is
k′-intersecting. Let X ∈ F be arbitrary. By the pigeonhole principle there is a
subfamily F ′ ⊆ F of size at least |F| /

( k
k′
)

≥ m − 1 that all intersect X in the
same way. Let X ′ ⊆ X be the subset such that X ′ = X ∩ Y for all Y ∈ F ′. In
other words, X ′ is a k′-sized subset of Y for all Y ∈ F ′. Hence, as Y ∩ Z ⊇ X ′

and F is k′-intersecting, we already have Y ∩ Z = X ′ for all Y,Z ∈ F ′.
So, F ′ ∪ {X} is a desired ∆-system of size m.

18Again, set M = m ·
(

k
⌊k/2⌋

)
for a universal bound.
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Brute-force proof. We will just repeat the proof of the Sunflower Lemma. So, let’s show
that if a k-uniform family F has size at least |F| > k! ·(m−1)k, then a ∆-system F ′ ⊆ F
with |F ′| ≥ m exists: We will proceed by induction on k ∈ N.

• If k = 1, k-uniform families is just a family of singleton sets that are in particular
pairwise disjoint. So, |F| > m− 1 suffices. ✓

• Consider k > 1 and assume that the statement is true for k′ < k.
Let F be a k-uniform family of size |F| > k! · (m − 1)k and let {B1, . . . , Bl} ⊆ F
be a largest subfamily of F such that all the Bi’s are pairwise disjoint.
If l ≥ m, then we are done, so assume l ≤ m− 1 and let B = ⋃l

i=1Bi. Obviously,
every Bi intersects B and due to maximality, the same is true for all F ∈ F .
So, by the pigeonhole principle, there is x ∈ B such that at least

|F|
|B|

≥ |F|
k(m− 1) > (k − 1)! · (m− 1)k−1

sets of F contain x. Let Fx be the family of sets in F that contain x. This family
is (k − 1)-uniform, so, applying the induction hypothesis, we get that Fx contains
a ∆-system F ′

x of size at least m. The sets that correspond to the in F ′
x contains

sets in F then form a ∆-system F ′.
This concludes the proof.

Exercise 3 (Hales-Jewett Theorem =⇒ Bipartite Induced Ramsey theorem)

For every bipartite graph B = (X ·∪Y,E) and every n ≥ 1 the combinatorial lines in En

correspond to induced copies of B in the bipartite graph B′ defined by

V (B′) = Xn ·∪Y n E(B′) = {{(x1, . . . , xn), (y1, . . . , yn)} | ∀ i ∈ [n] : xiyi ∈ E} .

Proof. W.l.o.g. we may assume that B has no isolated vertices. Let L be a combinatorial
line of En. Canonically, we claim that the induced copy of B is

V (B′′) =
⋃
e∈L

e =
(
Xn ∩

⋃
e∈L

)
︸ ︷︷ ︸

=:X′′

·∪
(
Y n ∩

⋃
e∈L

)
︸ ︷︷ ︸

=:Y ′′

E(B′′) = L.

To be concrete, let M ·∪C = [n], where M ̸= ∅ denotes the moving part and C the
constant part, and let φ : C → E be a map such that L = {ge : e ∈ E}

ge : [n] → E, i 7→
{
e, i ∈ M

f(i), i ∈ C.

From that, we see that
• all vertices of X ′′ have the same i-th component for all i ∈ C,
• all vertices of Y ′′ have the same i-th component for all i ∈ C,
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• for every v ∈ V (B′′) all the j-th’s component are the same for j ∈ M .
In addition, as every vertex is incident to at least one edge, the map ψ : V (B′′) →
V (B), v 7→ v(j) for some j ∈ M is well defined, a bijection and partite in the sense that
ψ(X ′′) = X and ψ(Y ′′) = Y .
We also see that uv ∈ L if and only if u(j)v(j) ∈ E for all j ∈ M . As all those
components are the same for j ∈ M , this is equivalent to φ(u)φ(j) = u(j)v(j) ∈ E.

Exercise 4

For all g, k ∈ N, l ≥ 2 there exists a k-uniform hypergraph H with χ(H) > l, g(H) > g.

Proof. We do an induction on g for fixed l and always deal with all k ∈ N simultaneously:
• For the induction base g = 1, note that H = K

(k)
l(k−1)+1, where the latter denotes the

k-uniform clique on l(k−1)+1 vertices, has chromatic number greater than l since
any l-vertex coloring ofH has, by the pigeonhole principle, one color class of vertices
of size at least k and therefore the corresponding edge would be monochromatic.
Trivially, the girth of H is greater than g.

• Assume that for all k ∈ N there exists a k-uniform hypergraph H ′ with χ(H ′) > l
and g(H ′) > g.

• For the construction of a k-uniform hypergraph H such that χ(H) > l and g(H) >
g + 1, we will define a sequence of graphs / “pictures” where the final graph is our
H. So, start out with the “picture” P0 being the vertex-disjoint k-uniform edges
that project onto the k-uniform clique K

(k)
l(k−1)+1. Let V 0

1 , . . . , V
0

l(k−1)+1 be the
partitioning of the vertices of P0 such that V 0

i contain all vertices that correspond
to vi in K

(k)
l(k−1)+1, where we think of

V
(
K

(k)
l(k−1)+1

)
=
{
v1, . . . , vl(k−1)+1

}
.

In particular, each vertex class forms an independent set.
Now, to define Pi from Pi−1, consider the vertex class V i−1

i . By the induction
hypothesis there exists a |V i−1

i |-uniform hypergraph H ′
i such that χ(H ′

i) > l and
g(H ′

i) > g. We will then let V (H ′
i) play the role of V i

i and for every |V i−1
i |-

uniform edge in H ′, we let the vertices in that edge play the role of V i−1
i and

“glue” onto them a to the other vertices otherwise disjoint copy of Pi−1. Naturally,
we then think of vertices that are copies of vertices in V i−1

j as vertices of V i
j for all

j ∈ [l(k − 1) + 1] and see that the vertex classes still form independent sets.
Finally, we let H = Pl(k−1)+1.

• The fact that g(H) > g + 1 is a straightforward inductive argument. Indeed,
P0 is the union of disjoint k-uniform edges and therefore has no cycles. Now,
assume that Pi−1 has girth greater than g + 1. Then, looking at Pi, a cycle that
is completely contained in one of the copies of Pi−1 must have length greater than
g+1. So, consider a cycle C = v1, e1, v2, e2, . . . , vr, er that traverses multiple copies
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of Pi−1. Since g(H ′
i) > g, C contains at least g + 1 vertices in the vertex class V i

i .
However, as we don’t actually contain the edges of H ′

i and V i
i is an independent

set in Pi, we must “detour” using a vertex outside of V i
i whenever we want to

move from one vertex in V i
i to the next one according to C. This means that

|V (C)| ≥ 2g + 1 > g + 1, so g(Pi) > g + 1.
• Next, we need to show that χ(H) > l. For that, let c be an arbitrary coloring. We

will show that H contains a copy of P0 where every vertex class is monochromatic.
Then, by the pigeonhole principle, there must be a color class containing at least
k of the vertex classes of P0. In particular, the k-uniform edge that goes through
k of those vertex classes would be monochromatic.
So, start out with H = Pl(k−1)+1. By our choice of H ′

l(k−1)+1, there must be
|V (l(k−1))

l(k−1)+1| vertices in Pl(k−1)+1 that were assigned the same color and have a
copy of Pl(k−1) glued onto them. In general, iterating through, we see that for
all j = 1, . . . , l(k − 1) + 1 there exists a copy of Pl(k−1)+1−j such that the vertices
corresponding to vertex class V l(k−1)+1−j

l(k−1)+1−i are monochromatic for all i = 1, . . . , j.
This concludes the proof.

Bonus Question: The Set-Theoretic Sunflower Lemma

Let F = (Si)i∈I be a sequence of finite sets such that I is uncountable. Then there is
an uncountable J ⊆ I and set K for which Si ∩ Sj = K for every i, j ∈ J, i ̸= j.

Proof. W.l.o.g. we may assume that F as a family of sets is k-uniform for some k ∈ N0.
Indeed, if not then there must be an uncountable J ⊆ I such that (Sj)j∈J is k-uniform
for some k ∈ N0. Otherwise, as a countable union of countably many sets,

I =
⋃

n∈N
{i ∈ I : |Si| = n}

would be countable. �

So, let F be k-uniform for some k ∈ N0. From here, it is a similar argument to the usual
proof of the Sunflower Lemma: We will now show the claim by induction on k.
If k ∈ {0, 1}, then the claim is trivial. So, let k ≥ 2 and assume that for all smaller
uniformities the statement is true. Let J ′ be a inclusion-maximal subset of I such that
(Sj)j∈J ′ forms a family of pairwise disjoint sets. If J ′ is uncountable, we are done, so
assume the opposite. Let S = ⋃

j∈J ′ Sj and note that S is countable. By maximality,
Si intersects S for all i ∈ I. By the same pigeonhole argument as above, there must
be x ∈ S such that I ′ ⊆ {i ∈ I : x ∈ Si} is uncountable. Let F ′ = (Si \ {x})i∈I′ . By
the induction hypothesis, we have that there is an uncountable subset J ⊆ I ′ such that
there exists a set K ′ for which (Si \ {x}) ∩ (Sj \ {x}) = K ′ for every i, j ∈ J, i ̸= j.
In particular, Si ∩ Sj = K for every i, j ∈ J, i ̸= j, where K = K ′ ∪ {x}.
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Sheet 10

Exercise 1

Trees are not well-quasi ordered under the subgraph relation.

⇝

Figure 4: T1 and general Tk

Proof. Consider the trees (Tk)k∈N where T1 is as given in Figure 4 and Tk results from
subdividing the middle edge of T1 k − 1 times. Clearly, there are no i < j such that
Ti ⊆ Tj , as the vertices in Ti with degree 3 need to be matched with the vertices in Tj of
the same degree, but the distance of those vertices in Ti is i while for Tj the distance is j.
Hence, Ti can’t be a subgraph of Tj for all i < j, so trees are not well-quasi ordered.

Exercise 2

⇝

Figure 5: Proof sketch

Kruskal’s Theorem on well-quasi orderings of rooted trees can be strengthened in such
a way that roots are mapped to roots in the topological embedding.
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Proof. Clearly, this relation defines a quasi-ordering, so we just need to check that every
sequence is good19: Let (Tk, rk)k∈N be a sequence of rooted trees where rk is the root of
Tk. Furthermore, let Ak consist of the rooted subtrees corresponding to the children of
the root rk in Tk. Let ≤ be the order-preserving topological embedibility relation among
finite rooted trees.20. By Kruskal’s Theorem, we know that ≤ is a well-quasi ordering.
As shown in Lemma 12.1.3, the by ≤ induced quasi-ordering on finite subsets of rooted
trees is also a quasiorder. In particular, there are i, j ∈ N, i < j, such that Ai ≤ Aj .
Let f : Ai → Aj be the injective mapping such that a ≤ f(a) for all rooted subtrees
a ∈ Ai. Using f , we can construct an order-preserving topological embedding that maps
roots to roots as follows: Topologically embed each rooted subtree a in Ai into f(a) while
preserving the order and map ri to rj . As Tj is a tree, there is a unique path between
rj to the roots of each of the mapped to subtrees. Thus, this new mapping is again an
order-preserving topological embedding that moreover maps ri to rj as desired.

Exercise 3

The tree-width of a (non-empty) finite graph is at least its minimum degree.

Proof. Let G be a finite graph and (T,V) be an optimal tree decomposition of G, i.e.
the largest bag in (T,V) has size tw(G) + 1.

• If T has no leaves, i.e. consists of only one vertex, the corresponding bag must
contain all vertices, of which there are at least δ(G) + 1.

• If T has a petal, then there is a leaf t ∈ V (T ) such that Vt \ Vs ̸= ∅ where s is the
unique adjacent vertex of t, then let x ∈ Vt \ Vs. As x ∈ Vs, the third condition
for tree decompositions forces Vt to be the only bag containing x. So, the second
condition implies that all the neighbors of x are also in Vt.
Thus, we get the desired bound, as

max
t′∈T

|Vt′ | = |Vt| ≥ |N(x) ∪ {x}| ≥ δ(G) + 1.

• If T has no petals, i.e. no leaves t such that Vt \ Vs ̸= ∅, where s is the unique
adjacent vertex of t, then let T ′ be the tree resulting from removing all leaves of T
and let V ′ = {Vt : t ∈ V (T ′)}. Then (T ′,V ′) is still an optimal tree decomposition
of G. Indeed, every vertex and edge is by assumption still contained in one of the
bags and restricting to a subtree of T also preserves the third condition (T3)21 for
tree decompositions.

If the third case occurs, we may do the same case distinction to (T ′,V ′) and as this last
case can only happen finite many times, one of the first two cases must apply at some
point, giving us the desired bound.

19As defined in Chapter 12.1 of Diestel’s Graph Theory.
20As defined in Chapter 12.2 of Diestel’s Graph Theory.
21See Chapter 12.3 in Diestel’s Graph Theory.
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Exercise 4

Remark. A tree decomposition whose tree is a path is a path decomposition. The
path-width of G is the least width of a path decomposition of G.

Trees have unbounded path width.

Proof. Concretely, we will show that pw(Td) ≥ d where Td is the complete ternary tree
of depth d ∈ N. Then, the claim would follow. To be a little more precise, T1 consists of
a root with three children and Tk consists of a root with each of its three children being
the root of a copy of Tk−1. We will proceed via induction on d ∈ N:
For d = 1, Td is a star and in particular contains edges, giving us pw(Td) ≥ 1.
Now, consider d > 1 and let (P,V) be an optimal path decomposition of Td. Let F,G,H
denote the three copies of Td−1 adjacent to the root of Td. As P naturally induces
path decompositions of F,G,H, the induction hypothesis implies that there are bags
VF , VG, VH ∈ V that contain at least d vertices of its respective subtree. W.l.og. we may
assume that VF , VG, VH are distinct, as otherwise we would be done.
Furthermore, let V ′

F , V
′

G, V
′

H ∈ V denote the bags that contains the edge between the
roots of Td and the respective subtree. Again, we may assume that {VF , VG, VH} ∩
{V ′

F , V
′

G, V
′

H} = ∅ as otherwise we would be done.

Case 1: One of the bags VF , VG, VH , say VF , lies in between two of V ′
F , V

′
G, V

′
H in the

path P . Then, by the third condition for tree decompositions, VF must contain
the root of Td, so the largest bag of (P,V) is at least |VF | ≥ d+ 1.

Case 2: Otherwise, one of VF , VG, VH , say VF , must lie in between VG and V ′
G or VH

and V ′
H , say VG and V ′

G. Indeed, at least two of VF , VG, VH must be on the
“same side” of the bags V ′

F , V
′

G, V
′

H in P by the pigeonhole principle, so the
“inner bag” must lie between the outer bag and its counterpart. However, by
the third condition for tree decompositions, this implies that VF contains the
roof of G, so again the largest bag of (P,V) is at least |VF | ≥ d+ 1.

As we have concluded that pw(Td) ≥ d in both cases, we are done.

Remark. This shows that the path-width grows at least logarithmically in the number
of vertices for trees. I wondered whether there are more extreme subfamilies of trees that
provide an even faster growth in the number of vertices. Asking Schacht the question I
had in mind, i.e. what the asymptotic growth of

f(n) = max {pw(T ) | T tree with |V (T )| = n}

is, it was answered in the negative: f(n) ∈ Θ(log(n)). This was shown by Petra Scheffler
in her paper A Linear Algorithm for the Pathwidth of Trees.
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