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1 Motivation

1 Motivation
Let d ≥ 1, let ω : Rd → Rd has a smooth vector field. Fix x ∈ Rd. Then the ordinary
differential equation (ODE) {

d xt = ω(xt) d t, t ≥ 0
x0 = x

(∗)

has a unique solution x(·) : R+ → Rd by the Picard-Lindelöf Theorem.

x
y

x7

x10

Figure 1: Sample trajectories that vary widely but have similar initial conditions

But in practice, for some ω sufficiently terrible, (xt)t≥0 is extremely sensitive to changes
of the initial value, so the ODE theory can be (completely) useless in practice.

Example 1.1 (Classical Example by Lorenz in 1963). Let d = 3, x = (x1, x2, x3), and
xt = (x1

t , x2
t , x3

t ), t ≥ 0, solve
d x1

t = σ(x2
t − x1

t ) d t, t ≥ 0
d x2

t = (x1
t (ρ − x3

t ) − x2
t ) d t, t ≥ 0

d x3
t = (x1

t x2
t − βx3

t ) d t, t ≥ 0
x0 = x.

(β, ρ, σ ∈ R)

For σ = 10, ρ = 28, c = 8/3, the solution gets highly chaotic, i.e. it changes a lot for
minor changes in the initial conditions.

Moreover, instead of the whole trajectory, one is typically interested in its discretization,
i.e. (xεn)n≥0 for some ε > 0 instead of (xt)t≥0. As (∗) has a unique solution for all x ∈ Rd,
we set the injective map T : Rd → Rd to be Tx = xε for all x ∈ Rd.
Furthermore, as (xt)t≥ε solves {

d xt = ω(xt) d t, t ≥ ε

xε = xε,

it follows that x2ε = Txε = T 2x, so in general (xεn)n≥0 = (T nx)n≥0.
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1 Motivation

Figure 2: A solution in the Lorenz attractor (Source: Wikipedia)

What do we want to solve?

Typically, what is of interest in such chaotic systems is the statistics of (T nx)n≥0.
1. Fix B ⊆ Rd. How often is T nx in B?

B

x

Tx

T 2x
T 3x

T 4x

For this reason, one would like to know the mean time of T nx being in B, i.e.

Φx(B) := lim
N→∞

1
N

N∑
n=1

χB(T nx) (∗)

if the latter exists. If this limit exists for any Borel set B ⊆ Rd, then B 7→ Φx(B) is
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1 Motivation

additive (i.e. Φx(A ·∪ B) = Φx(A) + Φx(B) for disjoint A, B ⊆ Rd), and therefore,
highly likely, a measure. We will explore for which T we can find such a measure
and when Φx does not depend on x.
We will usually assume that T is measure-preserving, i.e. T −1(B) has the same
volume as B for all Borel sets B ⊆ Rd. In the case of T defined by (∗) this is
equivalent to div ω = 0, but we will discuss this later.

2. Another interesting question is mixing. E.g., fix B ⊆ Rd and A ⊆ Rd.

B ∩ T nA

B

A

T nA

We want to tell something about B ∩ T nA, where T nA = {T nx, x ∈ A} ⊆ Rd. T
is called mixing if there exists a measure µ on Rd such that B and T nA are almost
µ-independent, i.e. for sufficiently large n,

µ(B ∩ T nA) ≈ µ(B) µ(T nA)︸ ︷︷ ︸
(=µ(A) usually)

or, if T is invertible and µ-preserving,

lim
n→∞

µ(B ∩ T nA) = µ(B)µ(A),

where A, B ⊆ Rd are Borel sets.
3. Sometimes instead of mixing, one has the same property, but for the average over

all the time steps, i.e.

lim
N→∞

1
N

N∑
n=1

µ(B ∩ T nA) = µ(B)µ(A).

This is called weak mixing. I.e., the sequence (T n)n≥1 is µ-independent if one
averages over time.

Example 1.2 (Grasshopper). Let T = R/2πZ ≃ [0, 2π) be the one-dimensional torus.
Let φ ∈ [0, 2π). For all x ∈ T, set Tx = x + φ.
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1 Motivation

φ
x

Tx

B

Figure 3: Grasshopper setup

The Question: Let B ⊆ [0, 2π) be an interval. What can be shown about χB(T nx)?
E.g., what is Φx(B) = limN→∞ 1/N ·

∑N
n=1 χB(T nx)?

The Answer: If φ is 2π-irrational, i.e. φ/2π ̸∈ Q, then Φx(B) = λ(B), i.e. the
normalized length of B. If x is 2π-rational, i.e. φ/2π ∈ Q, Φx(B)
depends on both x and B.
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2 A bit of Measure Theory

2 A bit of Measure Theory
We will give a brief review of measure theory. For basic proofs and exercises, see Measure
Theory by Bogachev.

Definition 2.1. Let X be a set. A collection B of subsets of X is called algebra if
(i) ∅ ∈ B and X ∈ B,
(ii) if B ∈ B, then its complement X \ B ∈ B,
(iii) for all B1, . . . , BN ∈ B one has ⋃N

n=1 Bn ∈ B.
B is called a σ-algebra if additionally

(iii)′ for all (Bn)n≥1 from B one has ⋃∞
n=1 Bn ∈ B.

Let C be a collection of subsets of X. Then we denote by σ(C) the σ-algebra generated
by C. Equivalently, σ(C) is the intersection of all σ-algebras containing C.

Exercise 2.2. Let (Bα)α∈Λ be a family of σ-algebras in X. Prove that ⋂σ∈Λ Bα is a
σ-algebra as well. Do we have the same for ⋃α∈Λ Bα?1

Definition 2.3. Let X be a topological space (e.g. Rd with the topology generated by
all open balls). Then the σ-algebra generated by all open sets in X is called the Borel
σ-algebra and is denoted by B(X).

Exercise 2.4. Show that a Cantor set C is in B(R) where C has the following form:

C = [0, 1] \
∞⋃

n=1
In,

where (In)n≥1 are disjoint open intervals.

Figure 4: The classical Cantor set

The classical Cantor set is an example of an uncountable set with length 0 (with respect
to the Lebesgue measure).2

Definition 2.5. Let X be a set and let B be a σ-algebra on X. Then (X, B) is called a
measurable space.

1Spoiler: No, not in general.
2“You can go rock climbing or think about the Cantor set, both are equally exciting.” – Dr. Ivan

Yaroslavtsev, 17th of April 2023.
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Figure 5: The distribution of the classical Cantor set

Definition 2.6. Let X be a set, B be an algebra on X. A map µ : B → [0, ∞] is called
(i) additive if for any disjoint B1, . . . , Bn ∈ B one has

µ

(
N⋃

n=1
Bn

)
=

N∑
n=1

µ(Bn).

(ii) countably additive or σ-additive if for all (Bn)n≥1 from B that are pairwise
disjoint such that ⋃∞

n=1 Bn ∈ B one has

µ

( ∞⋃
n=1

Bn

)
=

∞∑
n=1

µ(Bn).

If B is a σ-algebra and µ is σ-additive, then µ is called a measure. If µ takes values in
R+, then µ is called a finite measure. In this case, (X, B, µ) is called a measure space.3
If, additionally, µ(X) = 1, then µ is a probability or a probability measure and (X, B, µ)

3Others might follow the convention that (X, B, µ) is called a measure space even if µ is only a
measure.
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2 A bit of Measure Theory

is called a probability space. µ : X → R is called a finite signed measure if µ = µ1 − µ2
for some finite measures µ1 and µ2.
Let (X, B) be a measurable space and µ be a measure on (X, B). Then µ is called σ-finite
if there exists (Bn)n≥1 in B such that

∞⋃
n=1

Bn = X, ∀ n ∈ N : µ(Bn) < ∞.

Example 2.7. Let X = R, B = B(R), µ = λ be the Lebesgue measure, i.e. µ([a, b]) =
b − a for all b ≥ a, µ is σ-finite as µ([n, n + 1]) = 1 for all n ∈ Z, and ⋃n∈Z[n, n + 1] = R.

Example 2.8. Let (X, B, µ) be a measure space and assume that µ is finite and µ(X) >
0. Let µ̂ = µ/µ(X), i.e.

∀ B ∈ B : µ̂ = µ(B)
µ(X) .

Then µ̂ is a probability measure, and hence (X, B, µ̂) is a probability space.

Exercise 2.9. Let (X, B) be a measurable space and µ : X → [0, ∞] be additive. Then
the following are equivalent:

(i) µ is σ-additive.
(ii) For any increasing (Bn)n≥1 in B, i.e. Bn ⊆ Bm for all n ≤ m, one has

µ

( ∞⋃
n=1

Bn

)
= lim

n→∞
µ(Bn).

(iii) For any decreasing (Bn)n≥1 in B, i.e. Bn ⊇ Bm for all n ≤ m, one has

µ

( ∞⋂
n=1

Bn

)
= lim

n→∞
µ(Bn).

Typically, one defines a measure not on the whole σ-algebra, but only on some sets. For
example, the Lebesgue measure λ on Rd is first defined on cubes, i.e. we set

λ ([a1, b1] × · · · × [ad, bd]) =
d∏

i=1
(bi − ai)

for all b1 ≥ a1, . . . , bd ≥ ad. Then we can extend it to a measure on B(Rd) by the
following theorem.4

Theorem 2.10 (Carathéodory, without proof). Let X be a set and A be an algebra on
X. Let µ̃ : A → R+ be countably additive. Then there exists a unique measure on σ(A)
such that µ

∣∣
A = µ̃.

Exercise 2.11. Show the existence of the Lebesgue measure λ on Rd using the theorem
above and assuming that A is generated by all open and closed cubes.

4You don’t need to know it super in-depth for the exam.
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2 A bit of Measure Theory

2.1 Measures on R

Let X = R.
Definition 2.12. A right-continuous non-decreasing function F : R → R is called a
distribution. Concretely, F is a distribution if

(∗)
(i) F (x) ≤ F (y) for all x ≤ y,
(ii) F (x + ε) → F (x) as ε ↓ 0.

Note that for any such F one can define a map µ : J → R+ by µ((a, b]) = F (b) − F (a)
for all b ≥ a, where J = {(a, b] : b ≥ a} ⊆ B(R).
Exercise 2.13. Check that µ is σ-additive on the algebra A(J ) generated by J and
conclude that it can be uniquely extended to a measure on R.
For the inverse question (“Does any measure have a distribution?”) one needs the
following definition:
Definition 2.14. A measure µ on (R, B(R)) is called Lebesgue-Stieltjes if µ((a, b]) < ∞
for all b ≥ a.
Proposition 2.15. Let µ be a Lebesgue-Stieltjes measure. Then it has a distribution.
Proof idea. Set

F (x) :=
{

µ((0, x]), x ≥ 0
−µ((x, 0]), x < 0.

Then F (b) − F (a) = µ((a, b]) for b ≥ a, i.e. µ has distribution F . (∗∗)

(∗∗) follows from the construction of F and the additivity of µ. The properties (∗) follow
from the σ-additivity of µ.
Examples 2.16.

(1) Let α ∈ R, µ = δα, i.e.

µ(B) = δα(B) =
{

1, α ∈ B

0, α ̸∈ B.

In this case we can set

F (x) =
{

1, x ≥ α

0, x < α.

(2) Let µ = λ be the Lebesgue measure on R. Then we can set F (x) = x for all x ∈ R.
(3) Let f : R → R+ be continuous and assume that

µ ((a, b]) =
∫ b

a
f(x) d x.

Then we can set
F (x) :=

∫ x

0
f(t) d t.
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2 A bit of Measure Theory

2.2 Measures on Sequence Spaces

Let k ≥ 2 and let Σ+
k be the set of all infinite sequences of k symbols, i.e.

Σ+
k := {a = (a1, a2, a3, . . . ) : a1, a2, . . . ∈ {0, . . . , k − 1}} .

Fix n ≥ 1 and x1, . . . , xn ∈ {0, . . . , k − 1}. Then the set

Ix1,...,xn =
{

a ∈ Σ+
k : a1 = x1, . . . , an = xn

}
is called a cylinder. Let Cyl be the set of all cylinders.

Exercise 2.17. Find A = A(Cyl), the algebra generated by all cylinders.

Exercise 2.18. Fix p0, . . . , pk−1 ∈ [0, 1] such that p0 + · · · + pk−1 = 1. Let µ : A → R+
be defined by

µ (Ix1,...,xn) =
n∏

k=1
pxk

.

Show that µ is a probability.

Exercise 2.19. Let F : Σ+
k → [0, 1] be defined by F (a) = ∑

k≥1 ank−n for

a = (a1, a2, . . . ) ∈ Σ+
k .

Show that if p0 = · · · = pk−1 = 1/k, then for all x, y ∈ [0, 1], x ≤ y, one has that

µ
(
F −1(x, y]

)
= y − x = λ((x, y]).

Hint: It is sufficient to show the statement x = ∑N
n=1 xnk−n and y = ∑N

n=1 ynk−n with
N ≥ 1, x1, . . . , xN , y1, . . . , yN ∈ {0, . . . , k − 1}.

Proof. As described in the hint, it suffices to consider x = ∑N
n=1 xnk−n and y =∑N

n=1 ynk−n with N ≥ 1, x1, . . . , xN , y1, . . . , yN ∈ {0, . . . , k − 1} as we can arbitrarily
well approximate general x and y by numbers of that form. Now, it directly follows that

µ
(
F −1(x, y]

)
= µ ({(an)n≥1 : x1x2 . . . xN < a1a2 . . . aN ≤ y1y2 . . . yN })

=
∑

x1x2...xN <z1z2...zN ≤y1y2...yN

µ ({(an)n≥1 : a1 = z1, a2 = z2, . . . , aN = zN })

= y1y2 . . . yN − x1x2 . . . xN

kN

= y − x,

where x1x2 . . . xN is shorthand notation for ∑N
i=1 xi · kN−i.

Example 2.20 (Cantor set). Set k = 3, p0 = p2 = 1/2, p1 = 0. In such a way we can
introduce a probability measure on the Cantor set.

Keep in mind that, when thinking about such sequences, you can equivalently think
about [0, 1].
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2 A bit of Measure Theory

2.3 Lebesgue Integration

Let (X, B, µ) be a measure space. f : X → R is called measurable if for all D ∈ B(R)

f−1(D) = {x ∈ X : f(x) ∈ D} ∈ B.

Equivalently, f is measurable if

f−1 ((c, ∞)) ∈ B

for all c ∈ R. A function f : X → C is called measurable if both Re (f) and Im (f) are
measurable. For all B ∈ B, we define the characteristic function χB : X → R by

χB(x) =
{

1, x ∈ B

0, x ̸∈ B.

A function f : X → R is called simple if there exists N ≥ 1, c1, . . . , cN ∈ R and
B1, . . . , BN ∈ B such that

f =
N∑

n=1
cnχBn . (⋆)

For simplicity sake, assume that µ is a probability even though most of the following
results hold for σ-finite µ. Then for f of the form (⋆) we can define

∫
X f d µ by∫

X
f d µ :=

N∑
n=1

cnµ(Bn).

Now, let f : X → [0, ∞] be a general positive measurable function.
For each n ≥ 1, we set

fn(x) :=
{

i−1
2n , i−1

2n ≤ f(x) < i
2n , i = 1, . . . , n · 2n,

n, f(x) ≥ n.

X

Figure 6: Approximation of f through fn and fn+1
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2 A bit of Measure Theory

Exercise 2.21. Show that fm ≥ fn for all m ≥ n.

As (fn)n≥1 are simple, (∫
X

fn d µ

)
n≥1

is a non-decreasing sequence. Then we set∫
X

f d µ := lim
n→∞

∫
X

fn d µ ∈ [0, ∞].

The latter is called the Lebesgue integral of f with respect to µ. If
∫

X f d µ < ∞, then
f is called integrable. A measurable function f : X → R is called integrable if both
f+ = max {0, f} and f− = − min {0, f} are integrable.
In this case, as f = f+ − f−, we set∫

X
f d µ =

∫
X

f+ d µ −
∫

X
f− d µ.

2.4 Properties of the Lebesgue Integral

Let (X, B, µ) be a measure space.
1. For all integrable f, g and all α, β ∈ R, αf + βg is integrable and∫

X
αf + βg d µ = α

∫
X

f d µ + β

∫
X

g d µ.

2. For all integrable f and B ∈ B one has that χB · f is integrable and one can define∫
B

f d µ =
∫

X
χB · f d µ.

Furthermore, if µ(B) = 0, then
∫

B f d µ = 0. Therefore, the integral does not
change if f has different values on a set B of measure µ(B) = 0.
Hence, we can give the following definition:

Definition 2.22. For all f, g : X → R we say that f = g almost everywhere (or
short f = g a.e.) if

µ({x ∈ X : f(x) ̸= g(x)}) = 0.

If in addition µ is a probability, then we say that f = g almost surely (short f = g
a.s.).

Definition 2.23. Let L1(X, µ) (short L1(X)) be the linear space of all f : X → R
integrable, where f = g in L1(X) if f = g a.e.

3. For all f ∈ L1(X) with f ≥ 0∫
X

f d µ = 0 ⇐⇒ f = 0 a.s.

11



2 A bit of Measure Theory

4. For all f, g ∈ L1(X) such that f ≤ g a.e. (i.e. µ({x ∈ X : f(x) > g(x)} = 0), one
has ∫

X
f d µ ≤

∫
X

g d µ.

5. If f ∈ L1(X), then |f | ∈ L1(X). Indeed, in this case for f+ = max {0, f} , f− =
− min {0, f}, one has |f | = f+ + f−, so∫

X
f d µ =

∫
X

f+ d µ︸ ︷︷ ︸
<∞

+
∫

X
f− d µ︸ ︷︷ ︸
<∞

< ∞

as f ∈ L1(X). Thus,

|f | ∈ L1(X) ⇐⇒
∫

X
|f | d µ < ∞

⇐⇒
(∫

X
f+ d µ < ∞ ∧

∫
X

f− d µ < ∞
)

⇐⇒ f ∈ L1(X).

So f ∈ L1(X) if and only if
∫

X |f | d µ < ∞.
6. (Monotone convergence theorem) Let f1, f2, . . . : X → R be a pointwise increasing

sequence (i.e. fm(x) ≥ fn(x) for all x ∈ X and m ≥ n) of integrable functions.
Then there exists f : X → (−∞, +∞] such that f(x) = limn→∞ fn(x), which is
measurable. Moreover, f+ = max {0, f} and f− = − min {0, f} one has that∫

X
f d µ =

∫
X

f+ d µ −
∫

X
f− d µ = lim

n→∞

∫
X

fn d µ ∈ (−∞, ∞],

i.e. f+ may not be integrable, but f− is always integrable.
7. (Fatou’s lemma) Let f1, f2, . . . : X → R be non-negative and measurable. If

lim infn→∞
∫

X fn d µ < ∞, then there exists f : X → [0, +∞] such that f(x) =
lim infn→∞ fn(x) for all x ∈ X, f ∈ L1(X) and∫

X
f d µ ≤ lim inf

n→∞

∫
X

fn d µ.

8. (Dominated convergence theorem) Let f1, f2, · · · ∈ L1(X) and assume that there
exists non-negative g ∈ L1(X) such that |fn| ≤ g a.e. Assume that there exists
f : X → R such that f(x) = limn→∞ fn(x) for a.e. x ∈ X. Then f ∈ L1(X) and∫

X
f d µ = lim

n→∞

∫
X

fn d µ.

Proof of these properties. Exercise or read any book on measure theory.
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3 Measure-preserving Transformations

3 Measure-preserving Transformations
Definition 3.1. Let (X1, B1, µ1) and (X2, B2, µ2) be two probability spaces. A map
T : X1 → X2 is called measurable if for all B ∈ B2

T −1(B) := {x ∈ X1 : Tx ∈ B} ⊆ X1

is in B1. T is called measure-preserving if additionally one has µ2(B) = µ1(T −1(B)) for
all B ∈ B2. T is called an invertible measure-preserving transformation if it is a bijection
with both T and T −1 : X2 → X1 being measure-preserving.

Remarks 3.2.
1. Let (X1, B1, µ1), (X2, B2, µ2) and (X3, B3, µ3) be probability spaces, T : X1 → X2

and S : X2 → X3 be measure-preserving. Then ST : X1 → X3 is also measure-
preserving. In order to show this, fix B ∈ B3. Then

µ3(B) = µ2
(
S−1(B)

)
= µ1

(
T −1S−1(B)

)
= µ1

(
(ST )−1(B)

)
.

2. Typically, (X1, B1, µ1) = (X2, B2, µ2), so T : X1 → X2 is an automorphism, i.e. a
mapping from a set to itself.

Example 3.3.
1. Let T = R/2πZ ≃ [0, 2π) be a torus with a normalized Lebesgue measure λ, let

α ∈ [0, 2π), and let T : T → T be such that Tx = x + α. Then T is an invertible
measure-preserving transformation.5

2. Let X = [0, 1)2, B = B(X) and let λ be the Lebesgue measure on X. Let a, b, c, d ∈
Z be such that ad − bc = 1. For each x = (x1, x2)⊤ ∈ R2 set

Tx :=
((

a b
c d

)(
x1

x2

))
mod 1

=
({

ax1 + bx2}{
cx1 + dx2}

)
,

where for y ∈ R {y} ∈ [0, 1) denotes the fractional part of y, i.e. the unique number
{y} ∈ [0, 1) such that y − {y} ∈ Z.

Exercise 3.4. Show that T is measurable.

Let us show that T is a bijection. Note that(
a b
c d

)−1

=
(

d −b
−c a

)
,

as (
d −b

−c a

)(
a b
c d

)
=
(

ad − bc bd − bd
−ac + ac ad − bc

)
=
(

1 0
0 1

)
.

5Note that this is the same example as Example 1.2 at the beginning of the lecture.
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0 1 2

1

2

x

Tx

(
a b
c d

)
x

Figure 7: Action of T in Example 3.3.2

Thus, if for some x, y ∈ X one has Tx = y, then(
d −b

−c a

)
Tx =

(
d −b

−c a

)
y .

In particular,(
d −b

−c a

)
y =

(
d −b

−c a

)({
ax1 + bx2}{
cx1 + dx2}

)

=
(

d −b
−c a

)(
a b
c d

)(
x1

x2

)
+
(

d −b
−c a

)
z

for some z ∈ Z2. The latter equals x + z̃ for some z̃ ∈ Z2. Therefore,

x =
((

d −b
−c a

)
y

)
mod 1

=
( {

dy1 − by2}{
−cy1 + ay2}

)

The fact that then additionally Tx = y follows analogously.
3. Let X = T, B = B(T), µ be the normalized Lebesgue measure. Fix an integer

n ≥ 1. For any x ∈ [0, 2π) ≃ T set Tx = (n · x) mod 2π = {nx/(2π)} · 2π.6

Exercise 3.5. Show that T is measure-preserving. Is T bijective?

6It’s the same as considering z 7→ zn on the unit circle in C.
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3 Measure-preserving Transformations
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Figure 8: Action of the transformation Tx =
((

1 1
0 1

)
x

)
mod 1

We will start with the following important statistical property which measure-preserving
transforms enjoy.

Theorem 3.6 (Poincaré’s Recurrence Theorem). Let (X, B, µ) be a probability space,
let T : X → X be measure-preserving and let E ∈ B be such that µ(E) > 0. Then
µ-almost all points of E return infinitely often to E under the iteration of T . I.e. there
exists F ⊆ E such that µ(E \ F ) = 0 and

∀ x ∈ F : ∃ n1 < n2 < . . . ∈ N : T n1x, T n2x, . . . ∈ E.

Proof. Let B be the set of points in E that never return to E, i.e.

B =
{

x ∈ E
∣∣∣ ∀ k ≥ 1: T kx ̸∈ E

}
= E \

( ⋃
k≥1

T −k(E)
)

.

As E ∈ B and T is measurable, T −k(E) ∈ B, so B ∈ B by the definition of σ-algebras.
Furthermore, by definition, T −n(B) is the set of all points that are in E after n ≥ 0
steps but then never return to E. Let us show that for all m > n ≥ 0 T −m(B) and
T −n(B) have the same measure and are disjoint. The first follows from the fact that T
is measure-preserving, so T m−n is so as well, see Remark 3.2, and the following identity:

T −m(B) = T −(m−n) (T −n(B)
)

=⇒ µ
(
T −m(B)

)
= µ(T −n(B)).

Let us now show that T −m(B) ∩ T −n(B) = ∅. Assume the converse, i.e. there exists
x ∈ T −m(B) ∩ T −n(B). Then

T nx ∈ T −(m−n)(B) ∩ B ⊆ T −(m−n)(E) ∩ B = ∅

by the definition of B. That’s why (T −n(B))n≥0 are disjoint, so

1 = µ(X) ≥ µ

⋃
n≥0

T −n(B)

 =
∑
n≥0

µ(T −n(B)) =
∑
n≥0

µ(B) =⇒ µ(B) = 0.
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3 Measure-preserving Transformations

In particular, as µ(E \ B) = µ(E), almost every point in E returns to E. Now, in order
to show that a.e. point returns infinitely many times, we set for all n ≥ 1

B̃n =
{

x ∈ E
∣∣∣T nx ∈ E but T kx ̸∈ E ∀ k > n

}
=
(
E ∩ T −n(E)

)
\
( ⋃

k>n

T −k(E)
)

.

In other words, B̃n are the set of points in E that are the last time in E after n steps.
Let us show that µ(B̃n) = 0. To this end, note that

T n(B̃n) = (T n(E) ∩ E) \
( ⋃

k≥1
T −k(E)

)
⊆ E \

( ⋃
k≥1

T −k(E)
)

= B,

i.e. B̃n ⊆ T −n(T n(B̃n)) ⊆ T −n(B), so µ(B̃n) ≤ µ(T −n(B)) = µ(B) = 0. Now we let
B̃ = ⋃

n≥0 B̃n, where B̃0 = B, be the set of points in E that only return to E finitely
many times and let F = E \ B̃. Then for all x ∈ F , (T nx)n≥1 is infinitely often in E,
and µ(E \ F ) = µ(B̃) = 0, so F is a desired set.

We will show for a concrete example the statement of the theorem (without using it).

Example 3.7 (Grasshopper revisited). Let T ≃ [0, 2π) be the torus, α ∈ (0, 2π), and
T : T → T be defined by Tx = x + α for x ∈ T.

1. Assume that α is 2π-rational, i.e. α/(2π) ∈ Q. Then α/(2π) = m/l for some
coprime m, l ∈ N, i.e. m and l have no common prime factor.

Exercise 3.8. Show that nm/l ∈ N for n ∈ N if and only if n/l ∈ N.

Then T nx = x + nα = x + (2πnm)/l for all n ∈ N. By the exercise above,

T nx = x ⇐⇒
(

∃ k̃ ∈ N : 2πnm

l
= 2πk̃

)
⇐⇒

(
∃ k̃ ∈ N : nm

l
= k̃

)
⇐⇒

(
∃ k ∈ N : n = lk

)
Thus, T is periodic with period l. In particular, every point in a subset E ∈ B(T)
returns infinitely often to E.

2. Assume that α is 2π-irrational, i.e. α/2π ̸∈ Q.

Lemma 3.9. Let α ∈ (0, 2π). There exists n ∈ N such that (nα) mod 2π ≤
min(α/2, π − α/2)) or (2π − nα) mod 2π ≤ min(α/2, π − α/2)).
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3 Measure-preserving Transformations

Proof. W.l.o.g. assume that α < π, otherwise consider 2π − α. Let k ≥ 1 be such
that kα ≥ 2π and (k − 1)α < 2π. If kα − 2π > α/2, then

2π − (k − 1)α = 2π − kα + α < α − α

2 = α

2 ,

so we can set n = k − 1. Otherwise n = k is as desired.

Corollary 3.9.1. For any α ∈ (0, 2π) and ε > 0 there exists n ∈ N such that
either αn < ε (mod 2π) or 2π − αn ≤ ε (mod 2π). In other words, αn ∈ (−ε, ε)
(mod 2π).

Proof. By Lemma 3.9, there exists n1 ∈ N such that α1 := αn1 ∈ (−α/2, α/2)
(mod 2π). Further, there exists n2 ∈ N such that α1n2 = αn1n2 ∈ (−α/4, α/4)
(mod 2π). By induction, there exists for any k ∈ N n1, . . . , nk ∈ N such that

αn1 . . . nk ∈
(

− α

2k
,

α

2k

)
(mod 2π).

Hence, choose k ∈ N such that k > log2(α/ε). Then 2k > α/ε, so α/2k < ε.
Thus, αn ∈ (−ε, ε) for n = n1 . . . nk.

Corollary 3.9.2. Let α ∈ (0, 2π) be 2π-irrational, I ⊆ T be an open interval.
Then for all x ∈ T, (T nx)n≥1 occurs in I infinitely many times.

As every non-empty open set is the union of open intervals, the corollary also holds
for any non-empty open set. In particular, the orbit of x is dense in T.

Proof. Let ε > 0 be smaller then the length of I. W.l.o.g. x = 0, I = (a, b), 0 ≤ a <
b < 2π.7 By Corollary 3.9.1, there exists n ≥ 1 such that αn ∈ (−ε, ε) (mod 2π).
As α is 2π-irrational, αn ̸= 0 (mod 2π), so either αn ∈ (−ε, 0) (mod 2π) or αn ∈
(0, ε) (mod 2π). Assume the latter (the first case is similar). If m ≥ 1 is such that
αn(m − 1) ≤ a (mod 2π) and αnm > a (mod 2π), then

αmn = αn︸︷︷︸
≤ε

+ (m − 1)αn︸ ︷︷ ︸
≤a

≤ a + ε < b,

as ε < b − a. Hence, αmn ∈ (a, b) = I (mod 2π), so T mnx ∈ I. As there are
infinitely many points m ≥ 1 such that

α(m − 1)n ≤ a < αmn (mod 2π),

and as T mnx ∈ I for such m, (T nx)n≥1 occurs in I infinitely many times.

7Even if your interval “wraps back around” at 0, you can always restrict to a subinterval of the
desired form.
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4 Invariant Measures

4 Invariant Measures
In this section, we are concerned with the situation where our measure isn’t given. In
other words, we are interested in the following question:

Given a measurable space (X, B) and a measurable transform T : X → X, can one find
a probability measure µ on (X, B) such that T is µ-preserving?

Such µ is then also called T -invariant.

Example 4.1. Let (X, B) be a measurable space, let T : X → X be such that T nx = x
for all x ∈ X, i.e. T is n-periodic. Let a1, . . . , an ∈ X be an orbit, i.e. a1, . . . , an are
distinct, Tai = ai+1 for all 1 ≤ i ≤ n−1, and Tan = a1. Assume that {a1} , . . . , {an} ∈ B.
Fix some p1, . . . , pn ∈ [0, 1] such that ∑n

k=1 pk = 1 and set µ = ∑n
k=1 pkδak

.

Exercise 4.2. Show that such µ is T -invariant if and only if p1 = · · · = pn = 1/n.

Recall that X is a metric space if there exists ρ : X → R+ such that
1. ρ(x, y) = 0 if and only if x = y for all x, y ∈ X,
2. ρ(x, y) = ρ(y, x) for all x, y ∈ X,
3. ρ(x, y) + ρ(y, z) ≥ ρ(x, z) for all x, y, z ∈ X.

X is called compact if for all (xn)n≥1 ∈ XN there exists x ∈ X and increasing (ni)i≥1 ∈
NN such that xni → x as i → ∞, i.e. ρ(x, xni) → 0 as i → ∞. In other words, X is
compact if every sequence has a convergent subsequence with limit in X.
The following theorem is important as it gives a positive answer to our question for a
wide class of spaces and transforms.

Theorem 4.3 (Krylov-Bogolyubov). Let X be a compact metric space, T : X → X be
continuous.8 Then there exists a probability µ on (X, B) where B = B(X) such that T
is µ-preserving or, equivalently, µ is T -invariant.

The proof is very long, so we will go step-by-step. Firstly, we will start with the following
definition.

Definition 4.4. Let (X, B) be a measurable space. We denote by M(X) the set of all
probability measures on (X, B). Note that M(X) is convex, i.e. for all µ, ν ∈ M(X)
and p ∈ [0, 1] one has that pµ + (1 − p)ν ∈ M(X). Further, let X be a metric space.
We endow M(X) with the weak∗-topology: A sequence (µn)n≥1 ∈ M(X)N converges to
µ ∈ M(X) weakly∗ if

∀ f ∈ C(X) :
∫

X
f d µn →

∫
X

f d µ, n → ∞.

Here C(X) denotes the set of continuous, bounded9 functions on X.
8Here, T is called continuous in a pointwise sense, i.e. if T xn → T x if xn → x as n → ∞.
9Note that any continuous function is also bounded since X is compact.
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4 Invariant Measures

Lemma 4.5 (Without proof). Let X be a compact metric space. Then M(X) endowed
with the weak∗-topology is compact, i.e. for all (µn)n≥1 ∈ M(X)N there exists µ ∈ M(X)
and increasing (ni)i≥1 ∈ NN such that µni → µ weakly∗ as i → ∞.

Definition 4.6. Let T : X → X be measurable. Then we define T̃ : M(X) → M(X) by

(T̃ µ)(B) = µ
(
T −1(B)

)
, µ ∈ M(X), B ∈ B.

In other words, T̃ maps a probability measure to the corresponding image measure.

From now on, let X be a compact metric space. We are interested in properties of T̃ .

Lemma 4.7. For all µ ∈ M(X) and f ∈ C(X) one has∫
X

f d T̃ µ =
∫

X
f ◦ T d µ

(
=
∫

X
f(T (x)) d µ(x)

)
.

Proof. First, assume that f = χB for some B ∈ B. Then∫
X

χB d T̃ µ = (T̃ µ)(B) = µ(T −1(B))

=
∫

X
χT −1(B)(x) d µ(x) =

∫
X

χB(Tx) d µ(x).

By linearity, the same can be shown for any step function. The desired follows from the
fact that any continuous function can be approximated by step functions.10

Lemma 4.8. Let T : X → X be continuous. Then T̃ : M(X) → M(X) is weak∗-
continuous and affine, i.e. for all µ, ν ∈ M(X) and p ∈ [0, 1] one has that

T̃ (pµ + (1 − p)ν) = pT̃ (µ) + (1 − p)T̃ (ν). (∗)

Proof. Let us start by showing that T̃ is weak∗-continuous. Let µ ∈ M(X), (µn)n≥1 ∈
M(X)N be such that µn converges to µ in the sense of the weak∗-topology, i.e.

∀ f ∈ C(X) :
∫

X
f d µn →

∫
X

f d µ

as n → ∞. Let us show that
∫

X f d T̃ µn →
∫

X f d T̃ µ as n → ∞. This follows from
Lemma 4.7 and the fact that f ◦ T is continuous and bounded as both f and T are
continuous and f is bounded, so∫

X
f d T̃ µn =

∫
X

(f ◦ T )(x) d µn(x) n→∞→
∫

X
(f ◦ T )(x) d µ(x) =

∫
X

f d T̃ µ.

(∗) follows from the fact that for all B ∈ B

(pT̃µ + (1 − p)T̃ ν)(B) = pµ
(
T −1(B)

)
+ (1 − p)ν

(
T −1(B)

)
= (pµ + (1 − p)ν)

(
T −1(B)

)
=
(
T̃ (pµ + (1 − p)ν)

)
(B).

10In other words, we use that the set of step functions is dense in in C(X).
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4 Invariant Measures

For measurable T : X → X, let

M(X, T ) :=
{

µ ∈ M(X) : µ = T̃ µ
}

denote the set of T -invariant probability measures on X. Like M(X), M(X, T ) is convex.
We would like to show that M(X, T ) ̸= ∅. Let us start with the following theorem.

Theorem 4.9. Let T be continuous. Then we have µ ∈ M(X, T ) if and only if∫
X f ◦ T d µ =

∫
X f d µ for all f ∈ C(X).

Proof. The statement follows from Lemma 4.7 and the fact that for µ, ν ∈ M(X) one
has that µ = ν if and only if

∀ f ∈ C(X) :
∫

X
f d µ =

∫
X

f d ν.11

Theorem 4.10. Let T : X → X be continuous and (σn)n≥1 ∈ M(X)N. For any n ≥ 1,
set

µn := 1
n

n∑
i=1

T̃ iσn ∈ M(X).

Then any limit point of (µn)n≥1 is in M(X, T ), i.e. T -invariant.

Proof. Let µ be a limit point of (µn)n≥1, i.e. there exists an increasing sequence (nj)j≥1
such that µnj → µ weakly∗ as j → ∞. Then for every f ∈ C(X) one has that f ◦ T ∈
C(X), so ∣∣∣∣∫

X
f ◦ T d µ −

∫
X

f d µ

∣∣∣∣
= lim

j→∞

∣∣∣∣∫
X

f ◦ T d µnj −
∫

X
f d µnj

∣∣∣∣
= lim

j→∞

1
nj

∣∣∣∣∣
nj∑

i=1

∫
X

(
f ◦ T i+1

)
−
(
f ◦ T i

)
d σnj

∣∣∣∣∣ (Def. of µn, Lem. 4.7)

= lim
j→∞

1
nj

∣∣∣∣∫
X

(
f ◦ T nj+1

)
− (f ◦ T ) d σnj

∣∣∣∣ (Telescoping sum)

≤ lim sup
j→∞

2 ∥f∥∞
nj

(Triangle inequality)

= 0,

hence µ ∈ M(X, T ) by Theorem 4.9.

Finally, we are ready to prove the Krylov-Bogolyubov theorem.

Proof of Theorem 4.3. Fix any (σn)n≥1 ∈ M(X)N. Then (µn)n≥1 from the previous
theorem has at least one limit point µ ∈ M(X) by the weak∗-compactness of M(X), see
Lemma 4.5. So, by Theorem 4.10, µ is the desired measure.

11For this fact, see any book on measure theory.
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4 Invariant Measures

Remark. Note that such a sequence (σn)n≥1 exists as every singleton set can be written
as an intersection of balls with fixed centre and decreasing radii. In particular, all
singleton sets are contained in our σ-algebra. Hence, we always have Dirac measures in
M(X).
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5 Conditional Expectations

5 Conditional Expectations
Definition 5.1. Let (X, B, µ) be a probability space and A ⊆ B be a sub-σ-algebra. Let
f : X → R be integrable and B-measurable. Then there exists a unique12 A-measurable
function h ∈ L1(X) such that ∫

A
h d µ =

∫
A

f d µ

for all A ∈ A. Such h is called the conditional expectation of f with respect to A and is
denoted by E [ f | A ].

The existence and uniqueness is proven in any measure theory book, e.g. Measure Theory
by Bogachev.

Examples 5.2.

A1 A2 A3 A4 A5 A6 X

f
E[f | A]

1. Let A1, . . . , An ∈ B be disjoint, A1 ∪ · · · ∪ An = X, and let A = σ({A1, . . . , An}).
Assume additionally that µ(Ai) > 0, i = 1, . . . , n. Then

E [ f | A ] =
n∑

i=1

∫
Ai

f d µ

µ(Ai)
χAi .

2. Let A = {∅, X}. Then E [ f | A ] must be a constant as it is A-measurable, and
thus

E [ f | A ] =
∫

X
E [ f | A ] d µ =

∫
X

f d µ = E [ f ] .

12Up to “almost everywhere” equality.
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5 Conditional Expectations

Properties of the conditional expectation

1. For all f, g ∈ L1(X), a, b ∈ R one has that

E [ af + bg | A ] = aE [ f | A ] + bE [ g | A ]

almost surely. In other words, E [ · | A ] is linear.
2. If f ≤ g, then E [ f | A ] ≤ E [ g | A ]. In other words, E [ · | A ] is monotone.

Hint: First show that if for two A-measurable functions f1, f2 ∈ L1(X) one has∫
A

f1 d µ ≥
∫

A
f2 d µ

for all A ∈ A, then f1 ≥ f2 almost surely.
3. As X ∈ A, ∫

X
E [ f | A ] d µ =

∫
X

f d µ.

4. For any A-measurable f ∈ L1(X) one has that E [ f | A ] = f almost surely.
5. Two sets A and B from B are called independent if µ(A ∩ B) = µ(A)µ(B). Two σ-

algebras F , G ⊆ B on (X, B) are called independent if for all A ∈ F and B ∈ G one
has that A and B are independent. We say that L1(X) ∋ f : X → R is independent
of the σ-algebra A if σ(f) := σ(

{
f−1(B) : B ∈ B(R)

}
) and A are independent. In

this case,
E [ f | A ] =

∫
X

f d µ

almost surely.

Proof. Exercise for the reader.

Hint: Use that
∫

X fg d µ =
∫

X f d µ
∫

X g d µ for independent f, g : X → R where
f, g, fg ∈ L1(X).

6. Let f ∈ L1(X), where f is not necessarily A-measurable, and g ∈ L∞(X) be
A-measurable. Then

E [ fg | A ] = gE [ f | A ]
almost surely.

7. Let A2 ⊆ A1 ⊆ B. Then for every f ∈ L1(X) we have

E [E [ f | A1 ] | A2 ] = E [ f | A2 ] (Tower property)

almost surely.
8. Let f : X → R be measurable and A-independent and let g : X → R be A-

measurable. Let h : R2 → R be a Borel-measurable function such that h(f, g) ∈
L1(X). Then for µ-almost all y ∈ X one has

E [ h(f, g) | A ] (y) =
∫

X
h(f(x), g(y)) d µ(x).
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6 Ergodic Transforms and Birkhoff’s Ergodic Theorem

6 Ergodic Transforms and Birkhoff’s Ergodic Theorem
Let us now return to transformations: Let (X, B, µ) be a probability space and T : X →
X be measurable and µ-preserving.

Definition 6.1 (Ergodicity). T is called ergodic if for any A ∈ B such that T −1(A) = A
one has µ(A) ∈ {0, 1}. A set A ∈ B is called T -invariant if T −1(A) = A. A measurable
function f → R13 is called T -invariant if f ◦ T = f almost surely.

Recall that the symmetric difference of A, B ∈ B is defined by

A ∆ B := (A \ B) ∪ (B \ A).

Proposition 6.2. The following statements are equivalent:
(i) T is ergodic.
(ii) For any A ∈ B such that µ(A ∆ T −1(A)) = 0, one has µ(A) ∈ {0, 1}.14

(iii) Every T -invariant function is constant.

Note that the second condition is really a natural relaxation of our definition above for
ergodicity as it states that measurable sets still have measure one or zero if they are
T -invariant up to a null set. This will play in nicely to show that (ii) implies (iii) since
the T -invariance of a function only gives equality almost everywhere.

Proof.

(i) =⇒ (ii): Let T be ergodic and let A ∈ B be such that µ(A ∆ T −1(A)) = 0.
Let Ã = ⋂

n≥0
⋃

i≥n T −i(A).15 Let us show that Ã is T -invariant. To
this end, start with T −1(Ã) ⊆ Ã: Fix x ∈ Ã. For n ≥ 0 there exists
j(n) ∈ N, j(n) ≥ n, such that x ∈ T −j(n)(A). Then

T −1(x) ⊆ T −(j(n)+1)(A) ⊆
⋃
i≥n

T −i(A).

As this holds for every n ≥ 0,

T −1(x) ⊆
⋂

n≥0

⋃
i≥n

T −i(A) = Ã,

so the desired follows. Let us show that Ã ⊆ T −1(Ã). This holds as

T −1(Ã) = T −1

⋂
n≥0

⋃
i≥n

T −i(A)


13One may also replace R by the compactification [−∞, ∞].
14I.e. every measurable set A that is apart from a null set T -invariant must have measure zero or one.
15I.e. Ã is the set of x ∈ X for which T i(x) ∈ A for infinitely many i ∈ N0.
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6 Ergodic Transforms and Birkhoff’s Ergodic Theorem

=
⋂

n≥0

⋃
i≥n

T −(i+1)(A)

=
⋂

n≥1

⋃
i≥n

T −i(A)

⊇ Ã.

As Ã is T -invariant, µ(Ã) ∈ {0, 1}. It remains to show that µ(A ∆ Ã) =
0. We start with noticing that16

µ(T −n(A) ∆ A) ≤ µ

(
n⋃

i=1
T −i(A) ∆ T −(i−1)(A)

)

≤
n∑

i=1
µ
(
T −i(A) ∆ T −(i−1)(A)

)
=

n∑
i=1

µ
(
T −(i−1)

(
T −1(A) ∆ A

))
=

n∑
i=1

µ
(
T −1(A) ∆ A

)
= 0.

Therefore,

µ

⋃
i≥n

T −i(A)

 ∆ A

 ≤ µ

⋃
i≥n

(
T −i(A) ∆ A

)
≤
∑
i≥n

µ
(
T −i(A) ∆ A

)
= 0.

Finally,

µ
(
Ã ∆ A

)
= µ

⋂
n≥0

An

 ∆ A

 ≤ µ

⋃
n≥0

(An ∆ A)


=
∑
n≥0

µ(An ∆ A) = 0,

where An = ⋃
i≥n T −i(A).

(ii) =⇒ (iii): Let f : X → R be T -invariant. Let B ∈ B(R), A = f−1(B).
First, note that

µ
(
(f ◦ T )−1 (B) ∆ f−1(B)

)
≤ µ(f ◦ T ̸= f) = 0.

16As A ∆ C ⊆ ((A ∆ B) ∪ (B ∆ C)) for any sets A, B, C.
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6 Ergodic Transforms and Birkhoff’s Ergodic Theorem

Next, notice that

T −1(A) = T −1
(
f−1(B)

)
= (f ◦ T )−1(B),

so µ(A ∆ T −1(A)) = 0, i.e. µ(A) ∈ {0, 1}. Thus,

µ
(
f−1(B)

)
∈ {0, 1}

for all B ∈ B(R).

Exercise 6.3. Conclude that f is constant a.s.

Proof. For each k ∈ Z and n ∈ N we define

Ak
n :=

{
x ∈ X : k

2n
≤ f(x) <

k + 1
2n

}
.

(Ak
n)k∈Z forms a partition for every fixed n ∈ N and since f is T -invariant

so is Ak
n. As the preimage of a Borel set of f , µ(Ak

n) equals 0 or 1. Hence,
there exists exactly one k =: kn such that µ(Akn

n ) = 1. Thus,

X̃ :=
⋂

n∈N
Akn

n

has measure 1 and f is constant on X̃ with value limn→∞ kn/2n.

(iii) =⇒ (i): Assume that every T -invariant function is constant a.s. Fix T -invariant
A ∈ B. Let f = χA. Then

f ◦ T = χT −1(A) = χA,

so f is T -invariant. As f is constant a.s., µ(A) ∈ {0, 1}.

Theorem 6.4 (Birkhoff’s ergodic theorem). Let (X, B, µ) be a probability space and
let T : X → X be µ-preserving. Furthermore, let f ∈ L1(X). Then, one has

lim
N→∞

1
N

N−1∑
n=0

f(T nx) = E [ f | G ] (x) (∗)

for almost every x ∈ X, where the left hand side of (∗) is well-defined and

G :=
{

A ∈ B : T −1(A) = A
}

is the σ-algebra generated by / of all T -invariant sets.

Exercise 6.5. Show that any A ∈ G is T -invariant.17 Conclude that any G-measurable
f : X → R is T -invariant.18

17In other words, show that the set of all T -invariant sets is a σ-algebra.
18Just plug in the definitions.
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6 Ergodic Transforms and Birkhoff’s Ergodic Theorem

Hint: Show that countable unions, intersections, and complements of T -invariant sets
are T -invariant.

Corollary 6.5.1. T is ergodic if and only if for every f ∈ L1(X) one has

E [ f | G ] =
∫

X
f d µ

almost surely. In particular, for almost all x ∈ X, one has

lim
N→∞

1
N

N−1∑
n=0

f(T nx) =
∫

X
f d µ

almost surely. That is, T is ergodic if and only if the time average converges to the space
average.

Proof. Let T be ergodic and let f ∈ L1(X). We need to show that

E [ f | G ] =
∫

X
f d µ

almost surely. As G is the σ-algebra of all T -invariant sets (see Exercise 6.5), the sets

A+ =
{
E [ f | G ] >

∫
X

f d µ

}
,

A− =
{
E [ f | G ] <

∫
X

f d µ

}
,

A0 =
{
E [ f | G ] =

∫
X

f d µ

}
are T -invariant. In particular, their measure is 0 or 1. Now, as A+ ·∪ A− ·∪ A0 = X, one
of them has measure one and the remaining two have measure zero. If µ(A+) = 1, then

0 =
∫

A+
f d µ −

∫
X

f d µ =
∫

A+
E [ f | G ] d µ −

∫
A+

∫
X

f d µ d µ

=
∫

A+

[
E [ f | G ] −

∫
X

f d µ

]
︸ ︷︷ ︸

>0

d µ > 0. �

So, µ(A+) = 0. Similarly, µ(A−) = 0 and hence µ(A0) = 1.
Now, let T be not ergodic. Let us find f ∈ L1(X) such that E [ f | G ] is almost surely not
a constant. As T is not ergodic, there exists T -invariant A ∈ B such that 0 < µ(A) < 1.
Set f := χA. Then f is G-measurable as A ∈ G. Therefore,

E [ f | G ] = f = χA

almost surely, which is almost surely not constant.
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6 Ergodic Transforms and Birkhoff’s Ergodic Theorem

Corollary 6.5.2 (Borel’s theorem on Normal Numbers). Almost any number x ∈ [0, 1)
has the same frequency of ones and zeros in its binary code, i.e. if

x =
∑
k∈N

ak2−k

with a1, a2, . . . ∈ {0, 1}19, then

lim
N→∞

1
N

N∑
n=1

χ1(an)︸ ︷︷ ︸
=an

= lim
N→∞

1
N

N∑
n=1

χ0(an)︸ ︷︷ ︸
=1−an

= 1
2 .

In this case we say that x is normal to base 2.

Remark. This theorem can be generalized to an arbitrary base N ∋ b > 1. Also, since
the frequency of ones and zeros of any real number is dominated by its fractional part,
the theorem above actually holds for almost all real numbers.

Proof. Let T : [0, 1) → [0, 1) be defined by Tx = 2x (mod 1), x ∈ [0, 1).

Exercise 6.6. Show that such T is measure-preserving (with respect to the Lebesgue
measure).

Let us show that T is ergodic. By Proposition 6.2, it is sufficient to show that for every
T -invariant f : [0, 1) → R, i.e. f ◦ T = f almost surely, one has that f is constant
almost surely. Fix such a T -invariant f : [0, 1) → R. W.l.o.g. we may assume that
f ∈ L∞([0, 1)) as we can reset for every C > 0

f̃(x) =


C, f(x) > C

f(x), −C ≤ f(x) ≤ C

−C, f(x) < −C,

which is also T -invariant. As f ∈ L∞([0, 1)), then in particular f ∈ L2([0, 1)), so it has
a Fourier decomposition

f(x) =
∑
z∈Z

bz e2π i zx .

As T is measure-preserving, we have in an L2-sense

(f ◦ T )(x) = f(Tx)
=
∑
z∈Z

bz e2π i z·(2x (mod 1))

=
∑
z∈Z

bz e2π i z·2x

=
∑
z∈Z

bz e2π i(2z)x

19Note that the coefficients a1, a2, . . . are for almost any number unique.
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6 Ergodic Transforms and Birkhoff’s Ergodic Theorem

!= f(x). (T is λ-preserving.)

Thus, bz = b2z = b4z = . . . for all z ∈ Z. If bz ̸= 0 for some z ̸= 0, then ∑z∈Z |bz|2 = ∞,
which by Parseval’s theorem contradicts the fact that f is in L2([0, 1)). So, bz = 0 for
z ̸= 0 and f is almost surely a constant. Thus, T is ergodic. Set f = χ[1/2,1). Then by
Corollary 6.5.1, for almost every

x =
∑
k≥1

ak2−k ∈ [0, 1)

we have that
1
2 =

∫ 1

0
f(y) d y

= lim
N→∞

1
N

N−1∑
n=0

f(T nx)

= lim
N→∞

1
N

N−1∑
n=0

f(2nx (mod 1))

= lim
N→∞

1
N

N−1∑
n=0

f

∑
k≥1

ak2n−k (mod 1)


= lim

N→∞

1
N

N−1∑
n=0

f

∑
l≥1

al+n2−l

 (l = k − n)

= lim
N→∞

1
N

N−1∑
n=0

an+1

= lim
N→∞

1
N

N∑
n=1

an,

which is the desired result.

Let us now show Birkhoff’s theorem / Theorem 6.4. In order to do so we will need the
following lemma:

Lemma 6.7 (Maximal ergodic theorem). In the setting of Theorem 6.4, set for every
x ∈ X and N ≥ 1

SN (x) =
N−1∑
n=0

f(T nx), MN (x) := max {S0(x), . . . , SN (x)} ,

where S0(x) := 0. Then ∫
{MN >0}

f d µ ≥ 0

for every N ≥ 1.
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6 Ergodic Transforms and Birkhoff’s Ergodic Theorem

Proof. For any 0 ≤ k ≤ N and x ∈ X one has MN (Tx) ≥ Sk(Tx) and so

f(x) + MN (Tx) ≥ f(x) + Sk(Tx)

= f(x) +
k−1∑
n=0

f(T n+1x)

=
k∑

n=0
f(T nx)

= Sk+1(x).

Therefore,
f(x) ≥ max {S1(x), . . . , SN (x)} − MN (Tx). (∗)

Next, for x ∈ {MN > 0}, one has that 0 = S0(x) < MN (x), so

MN (x) = max {S1(x), . . . , SN (x)}

and hence by (∗)
f(x) ≥ MN (x) − (MN ◦ T )(x).

Thus, ∫
{MN >0}

f d µ ≥
∫

{MN >0}
MN − MN ◦ T d µ

=
∫

X
MN d µ −

∫
{MN >0}

MN ◦ T d µ (∗∗)

as ∫
{MN ≤0}

MN d µ = 0

since MN is nonnegative, so MN = 0 on {MN ≤ 0}. Now,∫
{MN >0}

MN ◦ T d µ =
∫

X
χ{MN >0} · MN ◦ T d µ

≤
∫

X
MN ◦ T d µ

=
∫

X
MN d µ (∗ ∗ ∗)

as T is µ-preserving.20 Hence, by (∗∗) and (∗ ∗ ∗)∫
{MN >0}

f d µ ≥ 0.

20This fact is left as an exercise for the reader.
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Proof of Theorem 6.4. First, note that it is sufficient to show that

0 = lim
N→∞

1
N

N−1∑
n=0

(f(T nx) −E [ f | G ] (x))

= lim
N→∞

1
N

N−1∑
n=0

[f −E [ f | G ]] (T nx),

where E [ f | G ] (x) = E [ f | G ] (T nx) almost surely as E [ f | G ] is G-measurable, and
hence T -invariant (see Exercise 6.5). By replacing f by f − E [ f | G ], we may assume
that E [ f | G ] = 0. Assume additionally that f is bounded as bounded functions are
dense in L1(X) and as each of the mappings

f 7→ 1
N

N−1∑
n=0

f ◦ T n,

f 7→ E [ f | G ]

are continuous linear operators on L1(X) with norm 1. Define

S̄ := lim sup
n→∞

Sn

n

¯
S := lim inf

n→∞
Sn

n
,

where Sn is defined as in Lemma 6.7. We want to show that S̄ =
¯
S = 0 almost surely.

To this end it is enough to show that S̄ ≤ 0 almost surely, as then by considering −f
one gets

¯
S ≥ 0 almost surely, so 0 ≤

¯
S ≤ S̄ ≤ 0, hence S̄ =

¯
S = 0.

Let us show that almost surely S̄ ≤ 0. We start by noticing that

(S̄ ◦ T )(x) = lim sup
N→∞

1
N

N−1∑
n=0

f(T n+1x)

= lim sup
N→∞

[
1
N

N−1∑
n=0

f(T nx) + 1
N

(
f(T N x) − f(x)

)
︸ ︷︷ ︸

≤ 2∥f∥∞
N

→0,N→∞

]

= lim sup
N→∞

1
N

N−1∑
n=0

f(T nx)

= S̄(x).

So, S̄ ◦ T = S̄. Hence S̄ is G-measurable. Fix ε > 0 and set

Aε :=
{

x ∈ X : S̄(x) > ε
}

.

Then Aε ∈ G as S̄ is G-measurable. We want to show that

µ(Aε) = 0.
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The idea: If there is a such a set with positive measure, we could take our original
f and reduce it by something smaller or equal to ε. Call this new function f ε. By
definition that would also reduce S̄ by ε. But since Aε is G-measurable we already have∫

Aε
f d µ =

∫
Aε
E [ f | G ] d µ = 0.

If we could then show that
0 ≤

∫
Aε

f ε d µ

we would be left with
0 ≤ −εµ(Aε).

The proof (continued): Set f ε := (f − ε)χAε . As Aε ∈ G, T −1(Aε) = Aε, so
χAε ◦ T n = χAε , and

Sε
N (x) :=

N−1∑
n=0

f ε(T nx) = (SN (x) − Nε) χAε(x),

M ε
N (x) := max {Sε

0(x), . . . , Sε
N (x)} .

In particular,
Sε

N (x)
N

=
{

0, S̄(x) ≤ ε
SN (x)

N − ε, otherwise.
(∗)

The sequence of sets {M ε
N > 0} increases as N 7→ M ε

N increases pointwise. Moreover,

Bε :=
⋃

N≥1
{M ε

N > 0} =
{

sup
N∈N

Sε
N > 0

}
=
{

sup
N∈N

Sε
N

N
> 0

}
. (∗∗)

By (∗), the following equivalences hold:

sup
N∈N

Sε
N (x)
N

> 0 ⇐⇒
(

∃ N ≥ 1: SN (x)
N

− ε > 0
)

⇐⇒ S̄(x) > ε.

Therefore,

Bε =
{

sup
N∈N

Sε
N

N
> 0

}
=
{

S̄ > ε
}

= Aε.

As f ∈ L1(X), we have f ε ∈ L1(X) as well, so by the dominated convergence theorem,
(∗∗) and the previous lemma one has

0 ≤ lim
N→∞

∫
{Mε

N >0}
f ε d µ

=
∫⋃

N∈N{Mε
N >0}

f ε d µ

=
∫

Bε
f ε d µ
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6 Ergodic Transforms and Birkhoff’s Ergodic Theorem

=
∫

Aε
f ε d µ

=
∫

Aε
f d µ − εµ(Aε).

As Aε ∈ G, the latter equals∫
Aε
E [ f | G ] d µ − εµ(Aε) = −εµ(Aε),

where we used that E [ f | G ] = 0. Thus, µ(Aε) = 0 for all ε > 0, so S̄ ≤ 0 almost surely
and the desired follows.

Corollary 6.7.1. Let (X, B, µ) be a probability space, T : X → X be µ-preserving.
Then T is ergodic if and only if for any A, B ∈ B

lim
N→∞

1
N

N−1∑
n=0

µ(T −n(A) ∩ B) = µ(A)µ(B). (⋆)

In other words, the event that a point is in B (if following a probability distribution
according to µ) and the event that such a point ends up in A after n steps are in a time
average sense almost independent for large n.

Proof. Let T be ergodic. Fix A, B ∈ B. Then by Theorem 6.4,

lim
N→∞

1
N

N−1∑
n=0

χA(T nx) =
∫

X
χA d µ = µ(A)

for almost every x ∈ X. Hence,

lim
N→∞

1
N

N−1∑
n=0

χA(T nx)χB(x)︸ ︷︷ ︸
≤χB(x)

= µ(A)χB(x)

for almost every x ∈ X. Thus, by the dominated convergence theorem, we get

µ(A)µ(B) =
∫

X
µ(A)χB d µ

= lim
N→∞

∫
X

1
N

N−1∑
n=0

χA(T nx)χB(x) d µ(x)

= lim
N→∞

1
N

N−1∑
n=0

∫
X

χT −n(A)(x)χB(x) d µ(x) (T nx ∈ A ⇐⇒ x ∈ T −n(A))

= lim
N→∞

1
N

N−1∑
n=0

µ(T −n(A) ∩ B),
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which is (⋆).
For the other direction, let (⋆) holds for any A, B ∈ B. Fix A ∈ B such that T −1(A) = A.
Then by (⋆)

(µ(A))2 = lim
N→∞

1
N

N−1∑
n=0

µ(T −n(A) ∩ A) = µ(A).

So, µ(A) ∈ {0, 1} and hence T is ergodic.
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7 Ergodic Measures for Continuous Transforms
Recall the notation used in Section 4, i.e.

• X is a compact metric space,
• B = B(X) is the Borel σ-algebra generated by all balls in X,
• T : X → X is continuous,
• M(X) is the set of all probability measures on (X, B) and endowed with a weak∗-

topology, i.e. µn → µ in M(X) if for all f ∈ C(X)∫
X

f d µn →
∫

X
f d µ, n → ∞,

• M(X, T ) ⊆ M(X) is the set of all T -invariant probabilistic measures, i.e. µ ∈
M(X, T ) if µ(T −1(A)) = µ(A) for any A ∈ B. By Section 4, M(X, T ) is non-
empty.

Our goal in this chapter is to study the structure of M(X, T ) further and, in particular,
establish that there always exists a measure such that T is ergodic under the above
conditions.

Definition 7.1 (Ergodicity, absolute continuity, mutual singularity). We say that µ ∈
M(X, T ) is called ergodic if T is ergodic on (X, B, µ). For µ, ν ∈ M(X) we say that µ
is absolutely continuous with respect to ν if for all A ∈ B ν(A) = 0 implies µ(A) = 0.
We denote this by µ ≪ ν. µ and ν are mutually singular if there exists A ∈ B such that
µ(A) = 0 and ν(A) = 1.

Lemma 7.2. Let µ, ν ∈ M(X, T ) be ergodic. If µ ≪ ν, then µ = ν.

Proof. Fix a measurable and bounded function f : X → R. By Theorem 6.4, one has

lim
N→∞

1
N

N−1∑
n=0

f(T nx) =
∫

X
f d ν (∗)

for ν-a.e. x ∈ X. Let Ω ⊆ X be such that ν(Ω) = 1 and (∗) holds pointwise on Ω. Then
ν(X \ Ω) = 0, so µ(X \ Ω) = 0, µ(Ω) = 1. Thus,

lim
N→∞

1
N

N−1∑
n=0

f(T nx) =
∫

X
f d ν

for µ-a.e. x ∈ X. But by Theorem 6.4, it equals∫
X

f d µ

µ-a.e. Hence, ∫
X

f d µ =
∫

X
f d ν.

By taking f = χA, A ∈ B, one gets µ(A) = ν(A), so µ = ν.
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Figure 9: Extremal and non-extremal points of a convex polygon

We say that µ ∈ M(X, T ) is an extremal point of M(X, T ) if there is no ν, η ∈ M(X, T )
and p ∈ (0, 1) such that µ = pν + (1 − p)η, ν ̸= µ, η ̸= µ. In other words, µ is extremal
if it can’t be written as the convex combination of two other points.
It is known that in a space of dimension d ∈ N, any non-extremal point can be written
as the convex combination of d extremal points. The same doesn’t generally not hold in
an infinite dimensional space.

Proposition 7.3. µ ∈ M(X, T ) is extremal if and only if it is ergodic.

Proof.

“ =⇒ ”: Let µ be extremal. Assume that it is not ergodic. Let A ∈ B be such that
0 < µ(A) < 1 and T −1(A) = A. Let for any B ∈ B

µA(B) := µ(A ∩ B)
µ(A) , µX\A(B) := µ(B ∩ (X \ A))

µ(X \ A) .

By Exercise Sheet 3, µA, µX\A are in M(X, T ). Furthermore, µ = µ(A) · µA +
µ(X \A) ·µX\A. As 0 < µ(A) < 1 and as µA ̸= µ, µ ̸= µX\, µ is not an extremal
point. � So, µ is ergodic.

“ ⇐= ”: Let µ be ergodic. Assume that µ is not extremal. Then there exists ν, η ∈
M(X, T ), p ∈ (0, 1) such that ν ̸= η, η ̸= µ, and µ = pν + (1 − p)η. If for
A ∈ B one has µ(A) = 0, then 0 = pν(A) + (1 − p)η(A), so as 0 < 1 − p, p < 1
and ν(A), η(A) are nonnegative, ν(A) = η(A) = 0. Thus, ν ≪ µ and η ≪ µ.
Similarly, if µ(A) = 1, then 1 = pν(A) + (1 − p)η(A), so ν(A) = η(A) = 1.

Fix T -invariant A. Then µ(A) ∈ {0, 1}. So by the derivations above,

ν(A), η(A) ∈ {0, 1} ,

thus ν and η are ergodic. By Lemma 7.2, ν = η = µ. � So, µ is extremal.

Proposition 7.4. M(X, T ) is convex compact with respect to the weak∗-topology.

36



7 Ergodic Measures for Continuous Transforms

Proof. M(X, T ) is convex as by our remarks in Definition 4.4. Let us show that it
is closed, i.e. for all (µn)n≥1 ∈ M(X, T )N such that µn → µ weakly∗ one has that
µ ∈ M(X, T ). To this end, note that, by the definition of weak∗-convergence, for all
f ∈ C(X) ∫

X
f d µ = lim

n→∞

∫
X

f d µn

= lim
n→∞

∫
X

f ◦ T d µn (Theorem 4.9)

f◦T ∈C(X)=
∫

X
f ◦ T d µ. (∗)

By Theorem 4.9 and (∗), we conclude that µ ∈ M(X, T ). Thus, M(X, T ) is closed.
As M(X, T ) is closed and as M(X) is compact by Lemma 4.5, M(X, T ) ⊆ M(X) is
compact.

Theorem 7.5. There exists at least one ergodic measure µ ∈ M(X, T ).

Proof. By the Krein-Milman Theorem21, any convex compact set in M(X) is a closed
convex hull of its extremal points, i.e. the smallest closed convex set containing extremal
points. In particular, as M(X, T ) is non-empty (see Theorem 4.3), it has extremal points,
which are ergodic measures by Proposition 7.4.

Example 7.6. If M(X, T ) contains only one measure, then this measure is ergodic. E.g.
X = T, Tx = x + α, x ∈ T, where α is 2π-irrational, see Exercise Sheet 2.

Proposition 7.7. Let µ, ν ∈ M(X, T ) be ergodic and µ ̸= ν. Then µ and ν are mutually
singular.

Proof. By the definition of mutual singularity, we need to find some A ∈ B such that
µ(A) = 1 and ν(A) = 0. By Lemma 7.2, as µ ̸= ν and as µ and ν are ergodic, they
are not absolutely continuous to each other. Therefore, there exists B ∈ B such that
µ(B) > 0 ad ν(B) = 0. Consider the set of points that return to B infinitely often, i.e.

A :=
⋂

n≥0

⋃
i≥n

T −i(B).

We have previously shown that T −1(A) = A. Furthermore,

ν(A) = ν

⋂
n≥0

⋃
i≥n

T −i(B)


≤
∑
i≥0

ν(T −i(B))

=
∑
i≥0

ν(B)

21See any reference on functional analysis, as we won’t state it here.
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= 0.

As A is T -invariant and µ is ergodic, µ(A) ∈ {0, 1}. It remains to show that µ(A) > 0.
To this end, note that

µ

⋃
i≥n

T −i(B)

 ≥ µ
(
T −n(B)

)
= µ(B),

i.e. the measure of those sets is bounded from below. So,

µ

⋂
n≥0

⋃
i≥n

T −1(B)

 = lim
n→∞

µ

⋃
i≥n

T −1(B)

 ≥ µ(B) > 0

since
(⋃

i≥n T −1(B)
)

n≥0
is a decreasing sequence of sets.
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8 Mixing
Definition 8.1. Let (X, B, µ) be a probability space and T : X → X be µ-preserving.
The T is called (strongly) mixing if for all A, B ∈ B

lim
n→∞

µ(T −n(A) ∩ B) = µ(A)µ(B).

T is called weakly mixing, if

lim
N→∞

1
N

N−1∑
n=0

∣∣µ (T −n(A) ∩ B
)

− µ(A)µ(B)
∣∣ = 0.

In other words, strong mixing means that T −n(A) and B are almost independent for n
large enough, while weak mixing means the same but in the time-average.

Remark (Why use −n in the exponent instead of n?). In our introductory chapter we
have discussed that mixing means in a literal sense that applying T n times to a certain
portion of space A ∈ B should give for large n a sort of mixing behaviour. But here, we
use −n instead of n. Formally, T −1 “behaves” better when working in measure theory.
But there are other reasons: If T is an invertible measure-preserving transformation,
then µ(T −n(A) ∩ B) = µ(A ∩ T n(B)) so one may think of applying the transformation
a bunch of times to B instead A to achieve this mixing behaviour. So, our original
idea of mixing agrees with our new notion for suitable T . For general T , one can also
get a different natural interpretation using probabilities: µ(T −n(A) ∩ B) can be seen
as the probability that a particle following the probability distribution µ is in B and
after n steps in A. Strong mixing states that for large n the two sub-events are almost
independent, i.e. the probability is asymptotically the same as the product of the two
probabilities.

Remark. The conditions of the definition can be checked only for A, B ∈ A, where A
is an algebra generating B, i.e. σ(A) = B, see Theorem 1.17 in Walters’ An Introduction
to Ergodic Theory.

Proposition 8.2. Strong mixing implies weak mixing, weak mixing implies ergodicity.

Proof. For the former implication, consider the real-valued sequence (an)n≥0 defined by

an := µ
(
T −n(A) ∩ B

)
.

Since T is by assumption strongly mixing, it means that an → µ(A)µ(B) =: a, n → ∞.
As |an − a| is non-negative, it suffices to show that

lim
N→∞

1
N

N−1∑
n=0

|an − a| ≤ 0.
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8 Mixing

For that, fix ε > 0. Then there exists N0 ∈ N such that |an − a| ≤ ε for all n ≥ N0. It
follows that

1
N

N−1∑
n=0

|an − a| = 1
N

N0−1∑
n=0

|an − a| +
N−1∑
n=N0

|an − a|


≤ 1

N

(
N0 max

0≤n≤N0−1
|an − a| + (N − N0) · ε

)
→ ε, N → ∞.

Let us now show the latter implication. Fix A ∈ B such that T −1(A) = A. By the
definition of weak mixing,

0 = lim
N→∞

1
N

N−1∑
n=0

∣∣∣µ(T −n(A) ∩ A) − µ(A)2
∣∣∣ =

∣∣∣µ(A) − µ(A)2
∣∣∣ ,

so µ(A) ∈ {0, 1}, so T is ergodic.

The question is now if for some of these notions we have equality, which turns out to be
false for both cases.

Remark (“Ergodicity ̸= weak mixing”). Indeed, let X = T ≃ [0, 2π), α ∈ [0, 2π) be
2π-irrational, Tx = x + α for all x ∈ X. Then T is ergodic22 (see Exercise Sheet
3). Let us show that T is not weakly mixing. W.l.o.g. α ∈ (0, π), otherwise we reset
α′ := 2π − α. Let A = B = (0, ε) for some ε < α/2. Then if for some n ≥ 0 one has that
T −n(A) ∩ B ̸= ∅, then T −(n+1)(A) ∩ B = ∅. Thus,

lim inf
N→∞

1
N

N−1∑
n=0

∣∣µ(T −n(A) ∩ B) − µ(A)µ(B)
∣∣ ≥ lim inf

N→∞

1
N

N

2 µ(A)µ(B) = µ(A)µ(B)
2 .

So T is not weakly mixing.

Remark (“Strong mixing ̸= weak mixing”). For such an example, have a look at
Walters’ An Introduction to Ergodic Theory and the references therein.

Let f : X → R be B-measurable. Set UT f := f ◦ T . Note that ∥UT f∥Lp = ∥f∥Lp .

Theorem 8.3. Let (X, B, µ) be a probability space and T : X → X be µ-preserving.
(a) The following are equivalent:

(i) T is ergodic.
(ii) For all f, g ∈ L2(X)

lim
N→∞

1
N

N−1∑
n=0

∫
X

Un
T f · g d µ =

∫
X

f d µ

∫
X

g d µ.

22With respect to the normalized Lebesgue measure.
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8 Mixing

(iii) For all f ∈ L2(X)

lim
N→∞

1
N

N−1∑
n=0

∫
X

Un
T f · f d µ =

(∫
X

f d µ

)2
.

(b) The following are equivalent:
(i) T is weakly mixing.
(ii) For all f, g ∈ L2(X)

lim
N→∞

1
N

N−1∑
n=0

∣∣∣∣∫
X

Un
T f · g d µ −

∫
X

f d µ

∫
X

g d µ

∣∣∣∣ = 0.

(iii) For all f ∈ L2(X)

lim
N→∞

1
N

N−1∑
n=0

∣∣∣∣∣
∫

X
Un

T f · f d µ −
(∫

X
f d µ

)2
∣∣∣∣∣ = 0.

(iv) For all f ∈ L2(X)

lim
N→∞

1
N

N−1∑
n=0

∣∣∣∣∣
∫

X
Un

T f · f d µ −
(∫

X
f d µ

)2
∣∣∣∣∣
2

= 0.

(c) The following are equivalent:
(i) T is strongly mixing.
(ii) For all f, g ∈ L2(X)

lim
n→∞

∫
X

Un
T f · g d µ =

∫
X

f d µ

∫
X

g d µ.

(iii) For all f ∈ L2(X)

lim
n→∞

∫
X

Un
T f · f d µ =

(∫
X

f d µ

)2
.

In particular, T is strongly mixing if for any f, g ∈ L2(X) Un
T f and g are almost

independent for n large enough.

Proof. We will only show (c), (a) and (b) can be shown similarly.
(ii) =⇒ (i): Let A, B ∈ B, f = χA, g = χB. Then

lim
n→∞

µ(T −n(A) ∩ B) = lim
n→∞

∫
X

χT −n(A) · χB d µ

= lim
n→∞

∫
X

χA ◦ T n · χB d µ

= lim
n→∞

∫
X

Un
T f · g d µ

(ii)=
∫

X
f d µ

∫
X

g d µ

= µ(A)µ(B).
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8 Mixing

(i) =⇒ (ii): By (i), one has that the equality in (ii) holds for any A, B ∈ B, f =
χA, g = χB. By the bilinearity of that equality, we can extend it to all
simple functions. Fix any f, g ∈ L2(X), ε > 0. Then there exists simple
f̃, g̃ ∈ L2(X) such that∥∥∥f − f̃

∥∥∥
L2

< ε, ∥g − g̃∥L2 < ε.

Then for all n ≥ 0 we have with the triangle inequality that∣∣∣∣∫
X

Un
T f · g d µ −

∫
X

f d µ

∫
X

g d µ

∣∣∣∣
≤
∣∣∣∣∫

X
Un

T f · g d µ −
∫

X
Un

T f · g̃ d µ

∣∣∣∣ (⋆)

+
∣∣∣∣∫

X
Un

T f · g̃ d µ −
∫

X
Un

T f̃ · g̃ d µ

∣∣∣∣ (⋆⋆)

+
∣∣∣∣∫

X
Un

T f̃ · g̃ d µ −
∫

X
f̃ d µ

∫
X

g̃ d µ

∣∣∣∣ (⋆ ⋆ ⋆)

+
∣∣∣∣∫

X
f̃ d µ

∫
X

g̃ d µ −
∫

X
f d µ

∫
X

g̃ d µ

∣∣∣∣ (⋆ ⋆ ⋆⋆)

+
∣∣∣∣∫

X
f d µ

∫
X

g̃ d µ −
∫

X
f d µ

∫
X

g d µ

∣∣∣∣ . (⋆ ⋆ ⋆ ⋆ ⋆)

• By the Cauchy-Schwarz inequality, (⋆) is bounded from above by

∥Un
T f∥L2 ∥g − g̃∥L2 ≤ ε ∥f∥L2

as ∥Un
T f∥L2 = ∥f∥L2 .

• (⋆⋆) is bounded from above by∥∥∥Un
T (f − f̃)

∥∥∥
L2

∥g̃∥L2 ≤ ε (∥g∥L2 + ε) .

• (⋆ ⋆ ⋆) goes to zero as n goes to infinity as f̃, g̃ are simple.
• (⋆ ⋆ ⋆⋆) is bounded from above by

∥g̃∥L2

∥∥∥f − f̃
∥∥∥

L2
≤ ε (∥g∥L2 + ε) .

• (⋆ ⋆ ⋆ ⋆ ⋆) is bounded from above by

∥f∥L2 ∥g − g̃∥L2 ≤ ε ∥f∥L2 .

As ε > 0 was arbitrary,∣∣∣∣∫
X

Un
T f · g d µ −

∫
X

f d µ

∫
X

g d µ

∣∣∣∣ → 0, n → ∞.

(ii) =⇒ (iii): Obvious.
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(iii) =⇒ (ii): Fix f ∈ L2(X). Let

Ff :=
{

g ∈ L2(X) :
∫

X
Un

T f · g d µ →
∫

X
f d µ

∫
X

g d µ, n → ∞
}

.

We want to show that Ff = L2(X). Note that Ff is linear, contains f
by (iii) and contains all constants as∫

X
Un

T f d µ =
∫

X
f d µ.

Ff is closed, which can be shown analogously as in the “(i) =⇒ (ii)”
step of the proof. Further, Ff is UT -invariant, i.e. if g ∈ Ff then
UT g ∈ Ff because

lim
n→∞

∫
X

Un
T f · UT g d µ = lim

n→∞

∫
X

Un−1
T f · g d µ

=
∫

X
f d µ

∫
X

g d µ

=
∫

X
f d µ

∫
X

UT g d µ,

where the first and last equality follows from T being measure-preserving.
Now, let g ⊥ Ff . Then, as Un

T f ∈ Ff ,
∫

X Un
T f · g d µ = 0. Further, as all

constants are in Ff ,
∫

X g d µ = 0. Thus,

lim
n→∞

∫
X

Un
T f · g d µ = 0 =

∫
X

f d µ

∫
X

g d µ,

so g ∈ Ff . Hence, g = 0 and F ⊥
f = {0}. Thus, Ff = L2(X).
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9 One- and Two-Point Motion
Let (X, B, µ) be a probability space, T : X → X be µ-preserving. A two-point motion
T × T : X × X → X × X is defined by (T × T )(x, y) = (Tx, Ty) for x, y ∈ X. Let B ⊗ B
be the σ-algebra generated by {A × B ⊆ X × X : A, B ∈ B}. Let the measure µ ⊗ µ
on (X × X, B ⊗ B) be the product measure defined by (µ ⊗ µ)(A × B) = µ(A)µ(B) for
A, B ∈ B: µ⊗µ can be uniquely extended to the algebra A generated by A×B, A, B ∈ B
adn then extended to B ⊗ B by Theorem 2.10.

Exercise 9.1. Show that T × T is (B ⊗ B)-measurable and (µ ⊗ µ)-preserving.

There are two strong connections between the properties of T and T × T . We start with
the following:

Theorem 9.2. T is strongly mixing if and only if T × T is strongly mixing.

Proof. See Problem 4 on Exercise Sheet 5.

Our main goal is to get the same result, but for weak mixing. To this end, let L2(X)
contain all C-valued L2 functions and let L2

0 :=
{
f ∈ L2(X) :

∫
X f d µ = 0

}
.

Definition 9.3. Let UT : L2(X) → L2(X) be defined by UT f := f ◦ T . Then T is called
to have continuous spectrum if the only eigenvalue of UT is 1 and the only eigenfunctions
are constants, i.e. the equation

UT f = λf (λ ∈ C, f ∈ L2(X))

only has the solution λ = 1 and f = c for some c ∈ C \ {0}. Equivalently, T has
continuous spectrum if UT defined on L2

0 has no eigenvalues.

Remark. Let λ be an eigenvalue of UT , i.e. UT f = λf for some f ∈ L2(X), f ̸= 0.
Then

∥f∥2
2 = ⟨f, f⟩ (∗)= ⟨UT f, UT f⟩ = ⟨λf, λf⟩ = |λ|2 ⟨f, f⟩ =⇒ |λ| = 1,

where ⟨·, ·⟩ is the inner product in L2(X) defined by

⟨f, g⟩ :=
∫

X
fḡ d µ,

and where (∗) follows from the fact that T is µ-preserving.

Theorem 9.4 (Mixing theorem). Let (X, B, µ) be a probability space, T : X → X be
an invertible µ-preserving transformation. Then the following are equivalent:

(i) T is weakly mixing.
(ii) T × T is weakly mixing.
(iii) T × T is ergodic.
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9 One- and Two-Point Motion

(iv) T has continuous spectrum.
Further, if T is not invertible, then (i) ⇐⇒ (ii) ⇐⇒ (iii).

Lemma 9.5 (Cesàro product). Let (an)n≥0, (bn)n≥0 be real-valued (or complex-valued)
bounded sequences and let a, b ∈ R (or a, b ∈ C) such that

lim
N→∞

1
N

N−1∑
n=0

|an − a| = 0, lim
N→∞

1
N

N−1∑
n=0

|bn − b| = 0,

then

lim
N→∞

1
N

N−1∑
n=0

|anbn − ab| = 0.

Proof. It is sufficient to note that

|anbn − ab| ≤ |an| |bn − b| + |b| |an − a| ≤ ã |bn − b| + b̃ |an − a| ,

where ã = supn≥0 |an| ∨ |a| , b̃ = supn≥0 |bn| ∨ |b|.

Lemma 9.6. T × T is weakly mixing (X × X, B ⊗ B, µ ⊗ µ) if and only if for all
A, B, C, D ∈ B

lim
N→∞

1
N

N−1∑
n=0

∣∣(µ ⊗ µ)
(
(T × T )−n(A × B) ∩ (C × D)

)
− (µ ⊗ µ)(A × B)(µ ⊗ µ)(C × D)

∣∣ = 0. (⋆)

In other words, it suffices to look at product sets to show that T × T is weakly mixing.

Proof. Let A ⊆ B ⊗ B be the algebra generated by A0 := {A × B : A, B ∈ B}. Note that
any E ∈ A can be represented as E = E1 ∪ · · · ∪ Ek for some disjoint E1, . . . , Ek ∈ A0.23

So, for all E, F ∈ A there exist disjoint E1, . . . , Ek ∈ A0 and disjoint F1, . . . , Fm ∈ A0
such that E = E1 ∪ · · · ∪ Ek, F = F1 ∪ · · · ∪ Fm. Therefore, we get

lim
N→∞

1
N

N−1∑
n=0

∣∣(µ ⊗ µ)
(
(T × T )−n(E) ∩ F

)
− (µ ⊗ µ)(E)(µ ⊗ µ)(F )

∣∣
= lim

N→∞

1
N

N−1∑
n=0

∣∣∣∣∣∣
k∑

i=1

m∑
j=1

(
(µ ⊗ µ)

(
(T × T )−n(Ei) ∩ Fj

)
− (µ ⊗ µ)(Ei)(µ ⊗ µ)(Fj)

)∣∣∣∣∣∣
≤

k∑
i=1

m∑
j=1

lim
N→∞

1
N

N−1∑
n=0

∣∣(µ ⊗ µ)
(
(T × T )−n(Ei) ∩ Fj

)
− (µ ⊗ µ)(Ei)(µ ⊗ µ)(Fj)

∣∣
= 0

by (⋆) and the triangle inequality. As B ⊗ B = σ(A), the desired follows from a remark
in the last chapter.

23This fact can be proved inductively and is left as an exercise for the reader.
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Proposition 9.7. Let H be a (C-valued) Hilbert space, U : H → H be a unitary
operator, i.e. UU∗ = U∗U = idH. Then for any f ∈ H there exists a probability
measure Ef on S1 := {z ∈ C : |z| = 1} such that

∀ n ∈ Z : ⟨Unf, f⟩ =
∫
S1

λn d Ef (λ). (⋆⋆)

In particular, if (X, B, µ) is a probability space and T an invertible µ-preserving transfor-
mation, then UT is unitary on L2

0(X), has continuous spectrum, so for all f ∈ L2
0(X),

Eλ(f) from (⋆⋆) has no atoms,24 i.e. Ef ({λ}) = 0 for all λ ∈ S1, and (⋆⋆) becomes

⟨Un
T f, f⟩L2 =

∫
X

Un
T f · f̄ d µ =

∫
S1

λn d Ef (λ).

Proof. See Theorem 1.25 from Walters’ An Introduction to Ergodic Theory or Halmos’
Lectures on Ergodic Theory.

Proof idea. Let E be the spectral measure of UT on L2
0(x). This means that for all

measurable K ⊆ S1 E(K) is a projection, and that
∫
S1 λ d E(λ) = UT in a weak sense,

i.e. for all n ≥ 0, f, g ∈ L2
0(X), we have

⟨Un
T f, g⟩ =

∫
S1

λn d ⟨E(λ)f, g⟩.

As UT has continuous spectrum, E({λ}) = 0 for all λ ∈ S1, so Ef := ⟨Ef, f⟩ does not
have atoms as well.

Proof of Theorem 9.4. First, let T be an invertible µ-preserving transformation:

(i) =⇒ (ii): Let T be weakly mixing. Let us show that T × T is weakly mixing.
By Lemma 9.6, it is sufficient to show (⋆) for all A, B, C, D ∈ B, which
follows from the fact that

1
N

N−1∑
n=0

∣∣(µ ⊗ µ)
(

(T × T )−n(A × B) ∩ (C × D)
)

− (µ ⊗ µ)(A × B)(µ ⊗ µ)(C × D)
∣∣

=
1
N

N−1∑
n=0

∣∣µ(T −n(A) ∩ C)µ(T −n(B) ∩ D) − (µ(A)µ(C)) (µ(B)µ(D))
∣∣

→ 0, N → ∞

by Lemma 9.5 and the fact that T is weakly mixing.

(ii) =⇒ (iii): See Proposition 8.2.

(iii) =⇒ (iv): Let T × T be ergodic. Assume that T is without continuous spectrum,
i.e. there exists λ ∈ C and nonconstant f ∈ L2(X) such that UT f =
f ◦ T = λf . Set

f̃(x, y) = f(x)f̄(y)
24See StackExchange.
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9 One- and Two-Point Motion

for x, y ∈ X. Then f̃ ∈ L2(X × X) and for all x, y ∈ X

UT ×T f̃(x, y) = (f̃ ◦ (T × T ))(x, y)
= f̃(Tx, Ty)
= f(Tx)f̄(Ty)
= λλ̄f(x)f̄(y)
= f̃(x, y),

where |λ| = 1 by the remark above.
As f̃ is not constant but (T × T )-invariant, T × T is not ergodic by
Proposition 6.2. � Thus, T has continuous spectrum.

(iv) =⇒ (i): Assume that T has continuous spectrum. Let us show that T is weakly
mixing. By Theorem 8.3, it is sufficient to show that

lim
N→∞

1
N

N−1∑
n=0

∣∣∣∣∣
∫

X
Un

T f · f̄ d µ −
∣∣∣∣∫

X
f d µ

∣∣∣∣2
∣∣∣∣∣
2

= 0

for all f ∈ L2(X). Clearly, equality holds if f is constant a.e. Hence,
w.l.o.g., by setting f̃ := f −

∫
X f d µ, we may assume that f ∈ L2

0(X),
so we need to show that

lim
N→∞

1
N

N−1∑
n=0

∣∣∣∣∫
X

Un
T f · f̄ d µ

∣∣∣∣2 = 0

⇐⇒ lim
N→∞

1
N

N−1∑
n=0

∣∣∣∣∫
S1

λn d Ef (λ)
∣∣∣∣2 = 0,

where the equivalence follows from Proposition 9.7. By Fubini’s theorem,

1
N

N−1∑
n=0

∣∣∣∣∫
S1

λn d Ef (λ)
∣∣∣∣2 = 1

N

N−1∑
n=0

∫
S1

λn d Ef (λ)
∫
S1

λ̄n d Ēf (λ)

=
∫
S1×S1

1
N

N−1∑
n=0

(λν̄)n d (Ef ⊗ Ēf )(λ, ν).

Recall that if x ̸= 1, then
N−1∑
n=0

xn = xN − 1
x − 1 ,

so if λν̄ ̸= 1, then∣∣∣∣∣ 1
N

N−1∑
n=0

(λν̄)n

∣∣∣∣∣ = 1
N

∣∣∣∣∣(λν̄)N − 1
λν̄ − 1

∣∣∣∣∣ ≤ 2
N

∣∣∣∣ 1
λν̄ − 1

∣∣∣∣ → 0, N → ∞.
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9 One- and Two-Point Motion

If λν̄ = 1, then

1
N

N−1∑
n=0

(λν̄)n = 1.

By the dominated convergence theorem, we thus get that

∫
S1×S1

1
N

N−1∑
n=0

(λν̄)n d (Ef ⊗ Ēf )(λ, ν)

N→∞→
∫
S1×S1

χλν̄=1 d (Ef ⊗ Ēf )(λ, ν)

=
∫
S1×S1

χλ=ν d (Ef ⊗ Ēf )(λ, ν)

= (Ef ⊗ Ēf )(D),

where D is the diagonal of S1 ×S1. The latter equals zero due to Fubini’s
theorem as Ef has no atoms:

(Ef ⊗ Ēf )(D) =
∫
S1

Ef ({λ}) d Ēf (λ) = 0.

Let us now show the second part of the theorem: While proving (i) =⇒ (ii) =⇒ (iii),
we did not use the invertibility of T , so we only need to show that (iii) =⇒ (i). So,
let T × T be ergodic. Fix A, B ∈ B. Analogously to Theorem 8.3 (or Exercise Sheet 5)
it is enough to show that

lim
N→∞

1
N

N−1∑
n=0

∣∣µ(T −n(A) ∩ B) − µ(A)µ(B)
∣∣2 = 0

in order to prove (i). First note that

lim
N→∞

1
N

N−1∑
n=0

µ(T −n(A) ∩ B) = lim
N→∞

1
N

N−1∑
n=0

(µ ⊗ µ)
(
(T × T )−n(A × X) ∩ (B × X)

)
= (µ ⊗ µ)(A × X)(µ ⊗ µ)(B × X)
= µ(A)µ(B),

where the second equality follows from T × T being ergodic. Similarly,

lim
N→∞

1
N

N−1∑
n=0

(
µ(T −n(A) ∩ B)

)2 = lim
N→∞

1
N

N−1∑
n=0

(µ ⊗ µ)
(
(T × T )−n(A × A) ∩ (B × B)

)
= (µ ⊗ µ)(A × A)(µ ⊗ µ)(B × B)
= (µ(A))2 (µ(B))2 .
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9 One- and Two-Point Motion

Thus,

lim
N→∞

1
N

N−1∑
n=0

∣∣µ(T −n(A) ∩ B) − µ(A)µ(B)
∣∣2

= lim
N→∞

1
N

N−1∑
n=0

((
µ
(
T −n(A) ∩ B

))2 − 2µ(A)µ(B)µ
(
T −n(A) ∩ B

)
+ (µ(A))2 (µ(B))2

)
= 0.

This completes the proof.

Example 9.8 (“Mixing should change distances.”). Let (X, d) be a metric space B =
B(X) be the Borel σ-algebra, µ be a probability measure on (X, B). Let T : X → X
be µ-preserving such that T preserves small distances, i.e. there exists δ > 0 such that
d(x, y) < δ =⇒ d(Tx, Ty) < δ for all x, y ∈ X. Assume that δ is neither too small or
too big, i.e. for all x ∈ X the ball

Bδ(x) := {y ∈ X : d(x, y) < δ}

does not have measure 0 or 1. Then T is not weakly mixing. Indeed, let

A := {(x, y) ∈ X × X : d(x, y) < δ} ⊆ X × X.

Then

(T × T )−1(A) = {(x, y) ∈ X × X : d(Tx, Ty) < δ}
⊇ {(x, y) ∈ X × X : d(x, y) < δ}
= A.

As T is µ-preserving, T × T is (µ ⊗ µ)-preserving, so

µ
(
(T × T )−1(A)

)
= (µ ⊗ µ)(A),

so we get

(µ ⊗ µ)
(
(T × T )−1(A) ∆ A

)
= (µ ⊗ µ)

(
(T × T )−1(A) \ A

)
= (µ ⊗ µ)

(
(T × T )−1(A)

)
− (µ ⊗ µ)(A)

= 0.

On the other hand, by Fubini’s theorem,

(µ ⊗ µ)(A) =
∫

X

∫
X

χd(x,y)<δ d µ(y) d µ(x)

=
∫

X
µ (Bδ(x)) d µ(x).
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9 One- and Two-Point Motion

As µ(Bδ(x)) ∈ (0, 1) for all x ∈ X, the latter integral is within (0, 1) as well, so

0 < (µ ⊗ µ)(A) < 1.

Hence, by Proposition 6.2, T × T is not ergodic, so by Theorem 9.4, T is not weakly
mixing.

Remark. Similarly, if there is some notion of angles in your space, one may show that
if the angle is sufficiently preserved by the transformation, then one can show that the
transformation can’t be weakly mixing by a similar ad-hoc argument.
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A Solutions to Exercise Sheets

Exercise Sheet 1

1. Show that there exist measurable spaces (X1, B1) and (X2, B2), a measurable
transform T : X1 → X2 and a set A ∈ B1 such that T (A) = {Tx : x ∈ A} ⊆ X2 is
not in B2.

Solution. Take X1 = X2 = {0, 1} =: X, T = idX , B1 = σ({0} , {1}) = 2X and
B2 = {∅, X2}. Clearly, T is measurable as

{
T −1(∅), T −1(X)

}
= {∅, X} ⊆ B1.

However, T (A) = {0} ̸∈ B2 for A = {0} ∈ B1.

2. (Exercise 3.5) Let X = T ≃ [0, 2π) be the torus, B = B(T), λ be the normalised
Lebesgue measure on T, i.e. ∀ 0 ≤ a ≤ b < 2π we set λ([a, b]) = (b − a)/(2π). Let
n ≥ 1 be an integer and let T : X → X be defined by

Tx = (nx) mod 2π := 2π

{
nx

2π

}
, x ∈ [0, 2π).

(a) T is measurable and measure-preserving as a map from (X, B, λ) to itself.

Proof. Let 0 ≤ a < b ≤ 2π. We see that

T −1 ([a, b)) = {x ∈ X | ∃ k ∈ {0, . . . , n − 1} : a ≤ nx − 2πk < b}

=
n−1⋃

·
k=0

[
a + 2πk

n
,
b + 2πk

n

)
.

So the preimage of all half-open intervals that are subsets of X are all in B.
Furthermore, this shows that

λ
(
T −1 ([a, b))

)
=

n−1∑
k=0

λ

([
a + 2πk

n
,
b + 2πk

n

))
= b − a

2π
= λ([a, b)).

As the half-open intervals generate B and λ is σ-finite, T is measurable and
measure-preserving by Theorem 2.10.

(b) If n ̸= 1, then T is not bijective. Furthermore, there exists a segment
A ⊆ [0, 2π) such that λ(A) ̸= λ(T (A)).

Proof. For the first part of the claim, consider 0 and 2π/n. Obviously, those
are two distinct numbers with T (0) = 0 = T (2π/n). So T is not injective
and in particular not bijective.
For the second part, consider A = [0, 2π/n). Then we have

λ(A) = 1
n

̸= 1 = λ(T (A))

since n ̸= 1.
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3. Let a, b, c, d ∈ Z be such that ad − bc = 1.
(a) Let h ∈ R2. Let S : R2 → R2 be defined by

Sx :=
(

a b
c d

)
x − h, x ∈ R2.

Then S is a bijection and its inverse given by

S−1(y) :=
(

d −b
−c a

)
(y + h).

Furthermore, S preserves the Lebesgue measure.

Proof. We first show that S is a bijection with the given inverse: If y = Sx,
then, due to ad − bc = 1, it follows that

S−1(y) =
(

d −b
−c a

)
(Sx + h) =

(
d −b

−c a

)(
a b
c d

)
x = x.

Similarly, one can show that if x = S−1(y), then Sx = y. Thus, S is a
bijection with the given inverse.
To show that S preserves the Lebesgue measure, note that S is a diffeomor-
phism. Furthermore, we have for all y ∈ R2 that

DS−1(x) =
(

d −b
−c a

)
=⇒

∣∣∣det
(
DS−1(x)

)∣∣∣ = ad − bc = 1.

So, by a change of variables we get for all A ∈ B(R2)

λ
(
S−1(A)

)
=
∫

A

∣∣∣det
(
DS−1(x)

)∣∣∣ d x = λ(A).

Thus, S is measure-preserving (with respect to the Lebesgue measure).

(b) Let X := [0, 1)2 and let B and T : X → X be defined as in Example 3.3.2.
Then T preserves the Lebesgue measure.

Proof. As we have already shown, T is a bijection with inverse

T −1(y)
((

d −b
−c a

)
y

)
mod 1

=
( {

dy1 − by2}{
−cy1 + ay2}

)
, y =

(
y1

y2

)
∈ X.

We first show that T is measurable in the first place, see Exercise 3.4. For
that, it suffices to show that the mapping

F : R2 → X,

(
x1

x2

)
7→
({

x1}{
x2}

)
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is measurable.25 For that, fix A ∈ B. We then have

F −1(A) =
⋃

v∈Z2

(A + v).

As translations are measurable and Z2 countable, F −1(A) is the countable
union of measurable sets, so F −1(A) ∈ B. Thus, T is measurable.
To show that T is measure-preserving, we use the following lemma:
Lemma A.1. Let X := [0, 1)2, T : X → X be a measurable bijection.
Assume additionally that there exists an open subset B ⊆ X of full Lebesgue
measure λ such that T is continuous on B. Then T preserves the Lebesgue
measure if and only if for any x ∈ B there exists δ > 0 such that for any
measurable A ⊆ X within the ball of radius δ with the centre in Tx one has
that λ(A) = λ(T −1(A)).
To use this lemma, note that T is continuous for x = (x1, x2)⊤ ∈ X if none
of ax1 + bx2 and cx1 + dx2 is an integer. Indeed, in a small neighborhood
around x, where ax̃1+bx̃2 and cx̃1+dx̃2 are also not integers for all x̃ in that
neighborhood, we have that T then acts just like a linear transformation,
which in particular is continuous.
Next, let B1 ⊆ X be the subset of all such x = (x1, x2)⊤ ∈ X where none
of ax1 + bx2 and cx1 + dx2 is an integer. Clearly, B1 is open, as one can
always (as we implicitly used before) find a neighborhood around x ∈ B1
that is also completely contained in B1. By our previous observation, B1 is
thus an open set on which T is continuous on.
To show that B1 is also of full measure, note that

T (X \ B1) =
{

x ∈ X : x1 = 0
}

∪
{

x ∈ X : x2 = 0
}

,

i.e. it’s the union of two finite line segments with one endpoint at the origin.
Let us now think of each step when applying T −1 on both sides. Applying
a linear transformation would preserve them being lines with one endpoint
at the origin and applying F would turn them into a union of finite affine
line segments. Thus, λ(X \ B1) = 0, so B1 is of full measure.
Furthermore, B2 = (0, 1)2 is also open and of full measure. Thus, B =
B1 ∩ B2 is an open subset of full measure on which T is continuous.
Now we can apply the lemma: Let x ∈ B. Choose δ > 0 in such a way
that the ball of radius δ with centre Tx is contained in T (B). Let A ∈ B be
within the ball of radius δ around Tx. As the Borel σ-algebra is generated
by open sets, we may assume w.l.o.g. that A is open. Then T −1(x) ∈ (0, 1)2

for all x ∈ A by definition of B2. This implies that none of dx1 − bx2 and
−cx1 + ax2 is an integer, meaning that T −1 is continuous on A. More

25If one were pedantic, we should really consider F
∣∣
X

, but as B is the “relative σ-algebra” on X

induced by B(R2), it doesn’t matter.
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specifically, T −1 is – restricted on A – a diffeomorphism with

DT −1(x) =
(

d −b
−c a

)
=⇒

∣∣∣det
(
DT −1(x)

)∣∣∣ = ad − bc = 1.

In particular, we see again by a change of variables that

λ
(
T −1(A)

)
=
∫

A

∣∣∣det
(
DT −1(x)

)∣∣∣ d x = λ(A).

Thus, by Lemma A.1, T is measure-preserving.

Remark. Alternatively, one may argue that T −1 restricted on A looks like a
function as in (a) for a suitable h. Hence, it immediately follows that T −1 is
measure-preserving when restricted onto A.
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Exercise Sheet 2

The goal in this sheet is to show that the only probability measure for which the 2π-
irrational rotations on T are measure-preserving, is the normalized Lebesgue measure.

1. Let T ≃ [0, 2π) be the torus and let µ be a probability measure on (T, B(T)).
Assume that there exists f : [0, 2π) → [0, 1] such that for any 0 ≤ a ≤ b < 2π one
has µ([a, b]) = f(b − a).

(a) f is non-decreasing, right-continuous, and f(0) = 0. Furthermore, for any
a, b ∈ [0, 2π), a + b < 2π, we have

f(a + b) = f(a) + f(b).

Proof. f is non-decreasing since for any 0 ≤ a ≤ b < 2π we have

f(a) = µ([0, a]) ≤ µ([0, a]) + µ((a, b]) = µ([0, b]) = f(b).

Next, let (xn)n∈N ∈ TN be a decreasing sequence such that xn ↓ x ∈ T as
n ↑ ∞. Define Bn = [0, xn] ∈ B(T) for all n ∈ N. Clearly, (Bn)n∈N is then
decreasing with

B :=
⋂

n∈N
Bn = [0, x].

Indeed, clearly [0, x] ⊆ B as x ≤ xn for all x ∈ N. On the other hand, if
T ∋ y > x there must be n0 ∈ N such that y > xn for all n ≥ n0, hence
y ̸∈ B. So, by Exercise 2.9,

lim
n↑∞

f(xn) = lim
n↑∞

µ(Bn) = µ(B) = f(x).

Thus, f is right-continuous. Next, for the sake of contradiction, assume
that f(0) > 0. That means that

µ({x}) = f(0) > 0

for all x ∈ T. However, that would imply that the set M = {π/n : n ∈ N}
has infinite measure, since, as µ is σ-additive, we have

µ(M) =
∞∑

n=1
µ

({
π

n

})
=

∞∑
n=1

f(0) = ∞.

This contradicts the fact that µ is a finite measure. Hence f(0) = 0.
Lastly, for a, b ∈ [0, 2π), a + b < 2π, we get

f(a + b) = µ([0, a + b])
= µ([0, a) ·∪[a, a + b])
= µ([0, a)) + µ([a, a + b])
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= (µ([0, a]) − µ({a})) + f(b)
= f(a) + f(b)

since µ is additive and µ({a}) = 0.

(b) µ is the normalized Lebesgue measure.

Proof. By Theorem 2.10, it suffices to show that for any 0 ≤ a ≤ b ≤ 2π

µ([a, b)) = b − a

2π
.

Consider integer sequences (ak)k∈N and (bk)k∈N such that ak/2k ↑ a/(2π)
and bk/2k ↓ b/(2π) as k ↑ ∞. These sequences can be constructed by
considering the binary expansions of a/2π and 1 − b/(2π). In particular,

⋂
k∈N

[2πak

2k
,
2πbk

2k

)
= [a, b),

where [ak/2k, bk/2k) is descreasing in k. Now, note that for all n ∈ N

1 = µ(T)

= µ

(
n−1⋃

·
m=0

[2πm

n
,
2π(m + 1)

n

))

=
n−1∑
m=0

µ

([2πm

n
,
2π(m + 1)

n

))

=
n−1∑
m=0

f

(2π

n

)
= nf

(2π

n

)
.

Thus, we get by Exercise 2.9

µ([a, b)) = lim
k→∞

µ

([2πak

2k
,
2πbk

2k

))

= lim
k→∞

bk−1∑
m=ak

µ

([2πm

n
,
2π(m + 1)

n

))

= lim
k→∞

bk−1∑
m=ak

f

(2π

2k

)

= lim
k→∞

bk − ak

2k

= b − a

2π
.
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2. Let T ≃ [0, 2π) be the torus and let α ∈ [0, 2π) be 2π-irrational. Set T : T → T to
be Tx : x + α for x ∈ T. Let B = B(T) be the corresponding Borel σ-algebra and
let µ be a T -invariant probability measure on (T, B), i.e. for any B ∈ B one has
µ(T −1(B)) = µ(B).

(a) T is a bijection and T −1x = x − α for any x ∈ T.

Proof. Consider x, y ∈ T with Tx = Ty. That means that x + α ≡ y + α
(mod 2π). So,

(y + α) − (x + α) = y − x

is an integer multiple of 2π. But since 0 ≤ x, y < 2π, this implies x = y.
So, T is injective.
On the other hand, for y ∈ T there exists suitable k ∈ N such that x :=
y − α + 2πk ∈ [0, 2π). In particular, Tx ≡ y (mod 2π). So, T is surjective.
Lastly, as we are in T always doing arithmetic in Modulo 2π, it follows from
the above that T −1x = x − α.

(b) For any x ∈ T one has that T nx ̸= T mx for any n, m ∈ Z. Furthermore,
µ ({x}) = 0.

Proof. Suppose there exist distinct m, n ∈ Z and x ∈ T such that that were
the case. Then,

x + αm ≡ T mx = T nx ≡ x + αn (mod 2π),

so α(m − n) ∈ 2πZ. But since m ̸= n, that means that α ∈ 2πQ. �
As T is bijective, the fact that µ is T -invariant implies that

µ(T z(B)) = µ(B)

for all z ∈ Z and B ∈ B. Consider the orbit B = {T zx : z ∈ Z}. As
a collection of countably many points, B must be measurable. Note that
due to the first part of the claim, B can be written as the disjoint, countable
union of the singleton sets containing T zx, z ∈ Z. So, using the monotonicity
of µ and the fact that T zx, we get

1 = µ(T) ≥ µ(B) =
∑
z∈Z

µ({T zx}) =
∑
z∈Z

µ({x}).

This chain of inequalities can only hold if µ({x}) = 0.

(c) Fix 0 ≤ a < b < 2π. Let I = [a, b]. Set c := b − a and I0 := [0, c]. Then for
any ε > 0 there exists n ≥ 0 such that T −n(I) ∆ I0 ⊆ (−ε, ε)∪(c−ε, c+ε).26

26Technically, it was written with closed brackets, but it’s correct as stated.
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Proof. Let ε > 0 be arbitrary. First, as −α is also 2π-irrational, we have by
(a) and Corollary 3.9.2 that there exists n ∈ N such that T −na ∈ (−ε, ε).
For that n, we explicitly get

T −n(I) =
{
T −nx : x ∈ I

}
=
{
T −n(a + y) : y ∈ I0

}
= T −na + I0 ⊆ (−ε, ε + c).

Thus, we get that

T −n(I) ∆ I0 = (T −n(I) \ I0) ∪ (I0 \ T −n(I))
⊆ ((−ε, 0) ∪ (c, c + ε)) ∪ ([0, ε) ∪ (c − ε, c])
= (−ε, ε) ∪ (c − ε, c + ε).

(d) For any ε > 0 one has that

|µ(I) − µ(I0)| ≤ µ(Aε),

where Aε := [−ε, ε] ∪ [c − ε, c + ε]. In particular, µ(I) = µ(I0).

Proof. Let ε > 0 be arbitrary. Choose n ≥ 0 as in (c). Consider the function
f(x) = 1T −n(I)(x)−1I0(x). Clearly, this function is measurable and, as µ is
a probability measure, integrable. Further, it is clear that f(x) ̸= 0 if and
only if x ∈ T −n(x) ∆ I0. So, |f | ≤ 1Aε by (c). So, as µ is T -invariant, we
get

|µ(I) − µ(I0)| =
∣∣µ(T −n(I) − µ(I0)

∣∣
=
∣∣∣∣∫

T
f d µ

∣∣∣∣
≤
∫
T

|f | d µ

≤
∫
T
1Aε d µ

= µ(Aε).

This shows the first part of the claim. Now, (A1/k)k≥1 is a decreasing
sequence with ⋂k∈N A1/k = {0, c}. So, by Exercise 2.9 and (b), we get that

lim
k→∞

µ
(
A 1

k

)
= µ({0}) + µ({c}) = 0.

This shows that µ(I) = µ(I0).

(e) µ is the normalized Lebesgue measure.

Proof. Let f : [0, 2π) → [0, 1], x 7→ µ([0, x]). By (d), this function satisfies
the property that for any 0 ≤ a ≤ b < 2π one has µ([a, b]) = µ([0, b − a]) =
f(b − a). So, by Exercise 1 (b), it follows that µ must be the normalized
Lebesgue measure.
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Exercise Sheet 3

1. Let (X, B) be a measurable space, T : X → X be measurable.
(a) For any A, B ∈ B we have T −1(A) ∩ T −1(B) = T −1(A ∩ B).

Proof. Via elementary equivalences, we get

x ∈ T −1(A) ∩ T −1(B) ⇐⇒
(
x ∈ T −1(A) ∧ x ∈ T −1(B)

)
⇐⇒ (Tx ∈ A ∧ Tx ∈ B)
⇐⇒ (Tx ∈ A ∩ B)
⇐⇒ x ∈ T −1(A ∩ B).

So, we’re done.

(b) Let µ be a T -invariant probability measure on (X, B). Assume that there
exists A ∈ B such that T −1(A) = A and µ(A) > 0. Then the measure ν
defined by ν(B) := µ(A ∩ B)/µ(A) is a T -invariant probability measure.

Proof. Clearly, ν is well-defined since µ(A) > 0 and is a measure since it
only differs from µ by a constant factor. It is a probability measure since
ν(X) = µ(A)/µ(A) = 1. To show that ν is T -invariant, let B ∈ B be
arbitrary. We get

ν(T −1(B)) = µ(A ∩ T −1(B))
µ(A)

= µ(T −1(A) ∩ T −1(B))
µ(A)

(a)= µ(T −1(A ∩ B))
µ(A)

= µ(A ∩ B)
µ(A) (T -invariance of µ)

= ν(B).

This completes the proof.

2. Let (X, B, µ) be a probability space and T : X → X be measurable, µ-preserving,
and not ergodic. Then there exists another probability measure ν on (X, B) such
that µ ̸= ν and T is ν-preserving.

Proof. Since T is not ergodic, there exists A ∈ B such that T −1(A) = A but
µ(A) ∈ (0, 1). Define ν as in Exercise 1 (b). It suffices to show that µ ̸= ν. This is
clear however, as µ(X \ A) = 1 − µ(A) ∈ (0, 1) but ν(X \ A) = 0.
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3. T ≃ [0, 2π) be the torus and let α ∈ [0, 2π). Set T : T → T to be Tx := x+α, x ∈ T.
Let B = B(T) be the corresponding Borel σ-algebra and let µ be the normalized
Lebesgue measure on T.

(a) If α is 2π-irrational, then T is ergodic.

Proof. Assume otherwise. If T is not ergodic, then Exercise 2 would give
us that there are at least two different probability measures on (T, B). But
by Exercise 2 from Exercise Sheet 2, we know that the only T -invariant
probability measure on (T, B) is µ, a contradiction.

(b) If α is 2π-rational, then T is not ergodic.

Proof. W.l.o.g. α ̸= 0 as otherwise T = idT. Let
α

2π
= m

n

for some coprime m, n ∈ N. We then get

T −nx = x − αn = x − 2πm ≡ x (mod 2π).

Let 0 < ε < 2π/n be arbitrary and let I = [0, ε] and

A :=
n−1⋃

·
k=0

T −k(I).

Note that the T −k(I) are pairwise disjoint by our choice of ε. Thus we get

T −1(A) =
n−1⋃

·
k=0

(
T −1 ◦ T −k

)
(I)

=
n−1⋃

·
k=0

T −(k+1)(I)

=
n⋃
·

k=1
T −k(I)

=
n−1⋃

·
k=0

T −k(I) (T −n(I) = I)

= A.

Furthermore, we have µ(A) = nµ(I) = nε/(2π) ∈ (0, 1) by our choice of ε.
So, T is by definition not ergodic.

(c) If α ̸= 0 is 2π-rational, i.e. α/2π = m/n for some coprime m, n ∈ N, then
A ∈ B is T -invariant if and only if A is preserved under the rotation 2π/n.
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Proof. Let 0 ≤ k < l < n be arbitrary. As m and n are coprime and in
particular 0 ≤ l − k < n, we have that n doesn’t divide m(l − k). It follows
that (l − k)α ̸≡ 0 (mod 2π). Thus, we have for any x ∈ T that

T −kx = x − kα ̸≡ x − lα = T −lx (mod 2π).

We also have for any x ∈ T and 0 ≤ k < n that T −kx = x − kα = x − 2πl/n
for some l ∈ N0 where, because we are calculating Modulo 2π, we may
assume that l ∈ {0, . . . , n − 1}. Together, these two facts imply that the
(periodic) orbit of x is

{
x, T −1x, . . . , T −(n−1)x

}
=
{

x, x − 2π

n
, . . . , x − 2π(n − 1)

n

}
.

Now, let A ∈ B be T -invariant. By definition, this means that for any
x ∈ A, T −1x is also in A. Inductively and due to T −nx = x, we see that A
is T -invariant, if and only if for any x ∈ A, we have{

T −1x, . . . , T −(n−1)x
}

=
{

x − 2π

n
, . . . , x − 2π(n − 1)

n

}
∈ A.

So, A ∈ B is T -invariant if and only if A is preserved under a 2π/n rotation.
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Exercise Sheet 4

1. Let (Y, F , ν) be a probability space and let X = Y Z. For each k ≥ 1 we endow
Y k with the σ-algebra F⊗k generated by all sets of the form A1 × . . . × Ak ⊆
Y k, A1, . . . , Ak ∈ F . A set C ⊆ X is called a cylinder if there exist k ≥ 1,
n1, . . . , nk ∈ Z, and A ∈ F⊗k such that

C =
{

x = (yn)n∈Z ∈ X : (yni)
k
i=1 ∈ A

}
. (1)

Let C be the set of all cylinders in X.
(a) C is an algebra.

Proof. Clearly, ∅ ∈ C since one can look at the cylinder with k = 1, n1 = 0
and A0 = ∅. Similarly, X ∈ C by choosing k = 1, n1 = 0 and A0 = Y .
Next, we show that C is closed under taking complements. For that, let C
be described by k ∈ N, n1, . . . , nk ∈ Z, A ∈ F⊗k. As F⊗k is a σ-algebra, we
get that Y k \ A ∈ F⊗k and as the complement is just given by

X \ C =
{

x = (yn)n∈Z ∈ X : (yni)
k
i=1 ∈ Y k \ A

}
,

this shows X \ C ∈ C. Lastly, consider C1, C2 ∈ C formed by k1, k2 ∈
N, n1

1, . . . , n1
k1

, n2
1, . . . , n2

k2
∈ Z, A1 ∈ F⊗k1 , A2 ∈ F⊗k2 respectively. By

appropriately extending A1, A2 by ×Y in the corresponding components,
we may assume that ki = 2m + 1, ni

1 = −m, . . . , ni
ki

= m for all i ∈ {1, 2},
where m may be chosen as

m = max
{∣∣∣ni

j

∣∣∣ : i ∈ {1, 2} , 1 ≤ j ≤ ki

}
.

But then C1∪C2 is a cylinder formed by 2m+1 ∈ N, n1 = −m, . . . , n2m+1 =
m, and A = A1 ∪ A2 ∈ F⊗2m+1.

Now, let B = σ(C). For each cylinder C ∈ C of the form (1) with A =
A1 × . . . × Ak ⊆ Y k we set

µ(C) =
k∏

i=1
ν(Ai).

Then µ can be extended to a probability measure on (X, B). Let T : X → X
be the right shift, i.e. for any x = (yn)n∈Z and n ∈ Z one has that (Tx)n =
yn−1, so Tx = (yn−1)n∈Z.

(b) T is B-measurable, invertible, and µ-preserving.

Proof. Clearly, T is invertible with
(
T −1(x)

)
n = yn+1 for any x = (yn)n∈Z:((

T −1 ◦ T
)

(x)
)

n
=
(
T −1 ((ym−1)m∈Z)

)
n

= y(n−1)+1,
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((
T ◦ T −1

)
(x)
)

n
= (T ((ym+1)m∈Z))n = y(n+1)−1.

As B is generated by C, it is sufficient to prove measurability and the µ-
preserving property of the sets from C. In particular, by the definition of
a cylinder, it is clear that B is already generated by cylinders of the form
(1) with A = A1 × · · · × Ak. Thus, it suffices to show the two claims
for those particular cylinders. So, let C ∈ C be a cylinder as in (1) with
A = A1 × · · · × Ak. We can see that T −1(C) ∈ B is the cylinder given by
the same k as C, the same A1, . . . , Ak and n′

i = ni − 1 for all i ∈ {1, . . . , k}.
In particular, we get that µ(T −1(C)) = µ(C) and are done.

(c) T is ergodic.

Proof. Let A ⊆ X in B such that T −1(A) = A. We need to show that
µ(A) ∈ {0, 1}. We fix ε > 0. Recall the following lemma:
Lemma A.2. Let (X, B, µ) be a probability space and let A ⊆ B be an
algebra such that B = σ(A). Then for any B ∈ B and any ε > 0 there
exists A ∈ A such that µ(A ∆ B) < ε.
Since C is an algebra that generates B, we can find some C27 in C such that
µ(A ∆ C) < ε and therefore also |µ(A) − µ(C)| < ε. Our next goal will
be to show that |µ(A) − µ(C)2| < 2ε, which for ε ↓ 0 would imply that
µ(A) = µ(A)2, giving us µ(A) ∈ {0, 1}.
For that, we want to start of by showing that µ(T −n(C) ∩ C) = µ(C)2 for
some n large enough. For that we note that for

C = {x = (ym)m∈Z ∈ X : (ymi)k
i=1 ∈ A}

we can choose n > max1≤i≤k |mi| to get

{mi : 1 ≤ i ≤ k} ∩ {mi − n : 1 ≤ i ≤ k} = ∅.

Thus, T −n(C) ∩ C is a cylinder of measure

µ(T −n(C) ∩ C) = µ({x = (ym)m∈Z : (ymi)k
i=1 ∈ A ∧ (ymi−n)k

i=1 ∈ A})
= µ(C)2.

Next we can use the fact that

(T −n(C) ∩ C) ∆ (T −n(A) ∩ A) ⊆ (T −n(C) ∆ (T −n(A)) ∪ (C ∆ A)

to deduce

µ((T −n(C) ∩ C) ∆ (T −n(A) ∩ A)) ≤ µ(T −n(C) ∆ (T −n(A)) + µ(C ∆ A)
< 2ε

27Described by k ∈ N, m1, . . . , mk ∈ Z, A ∈ F⊗k.
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since T is µ-preserving. Thus, we also get by using the above statement
and the T invariance of A that∣∣∣µ(C)2 − µ(A)

∣∣∣ = |µ(T −n(C) ∩ C) − µ(T −n(A) ∩ A)|

< 2ε.

As outlined, to conclude that µ(A) ∈ {0, 1}, we consider the case when
ε ↓ 0. More formally, let εl = 1/l for all l ∈ N and let Cl ∈ C be the cylinder
with

µ (A ∆ Cl) < εl.

Consider then x := lim supl→∞ µ(Cl). By construction, x ∈ [0, 1] and

x2 = µ(A) = x.

In particular, x must satisfy x2−x = x·(x−1) = 0. Thus, µ(A) ∈ {0, 1}.

(d) T is strong mixing, i.e. for any A, B ∈ B one has that

lim
n→∞

µ(T −n(A) ∩ B) = µ(A)µ(B).

Proof. Let C, C ′ ∈ C be such that for some ε > 0 fixed µ(A ∆ C) < ε and
µ(B ∆ C ′) < ε. Then, as before, we get

µ((T −n(A) ∩ B) ∆ (T −n(C) ∩ C ′)) ≤ µ(T −n(A) ∆ T −n(C)) + µ(B ∆ C ′)
< 2ε.

However, as C, C ′ are in C, we can use the above argument to find a large
enough n0 ∈ N such that µ(T −n(C) ∩ C ′) = µ(C)µ(C ′). Combining all that
we have for all ε > 0 and n ≥ n0 with the triangle inequality

|µ(T −n(A) ∩ B) − µ(A)µ(B)|
≤ |µ(T −n(A) ∩ B) − µ(T −n(C) ∩ C ′)| + |µ(C)µ(C ′) − µ(A)µ(B)|
< 2ε + |µ(C ′)(µ(C) − µ(A)) + µ(A)(µ(C ′) − µ(B))|
< 2ε + |µ(C ′)(µ(C) − µ(A))| + |µ(A)(µ(C ′) − µ(B))|
< 4ε.

So, limn→∞ µ(T −n(A) ∩ B) = µ(A)µ(B).

2. Consider the Baker’s Transformation S : [0, 1)2 → [0, 1)2 defined by

S(x, y) :=


(
2x, y

2
)

, x ∈ [0, 1
2), y ∈ [0, 1),(

2x − 1, y+1
2

)
, x ∈ [1

2 , 1), y ∈ [0, 1).
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(a) Let [0, 1)2 be endowed with the Borel σ-algebra and the Lebesgue measure.
Then S is isomorphic to a right shift. In particular, S is ergodic and strong-
mixing.

Proof. Consider (X, B, µ) as in Exercise 1 with

Y = {0, 1} , F = σ({0} , {1}), ν({0}) = ν({1}) = 1
2 .

Let Z̃ ⊆ [0, 1)2 be the set of all numbers where both components have unique
binary decompositions. As there are only countably many with non-unique
binary decomposition, it follows that Z̃ is of full measure. Now, as each
component is nonnegative and smaller than 1, the binary decomposition of
(x, y) ∈ Z̃ is given by

x =
∑
n∈N

an · 2−n, (a1, . . . ∈ Y )

y =
∑
n∈N

bn · 2−n. (b1, . . . ∈ Y )

For the sake of clarity, we alternatively express x and y in their binary
representations 0.a1a2 . . . , 0.b1b2 . . . respectively. Thus, we may consider
the mapping V : Z̃ → X̃ defined by

V (x, y)n =
{

a−n, n < 0
bn+1, n ≥ 0,

where we take X̃ to be the image of V .

n . . . −2 −1 0 1 2 . . .

n-th term . . . a2 a1 b1 b2 b3 . . .

Table 1: Schematic representation of V (x, y)

Note that by construction, X̃ is the set of all sequences whose terms for
both n → ∞ and n → −∞ don’t become constant. Hence, X̃ is also of full
measure. In fact, V is a bijection28 by the construction of Z̃ that lets one
interchange between the measure spaces, i.e. for measurable A ⊆ Z̃ and
measurable B ⊆ X̃ we have

µ(V (A)) = λ2(A) λ2(V −1(B)) = µ(B).

We will sketch the proof of this fact now. A formal treatment of a similar
statement is given in Exercise 2.19: Consider a cylinder C as in (1) where
A = A1 × · · · × Ak. In particular, let all Ai be singleton sets. To what

28With V −1 defined in the obvious way.
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set in Z̃ does C correspond to? Well, A basically specifies in the binary
decomposition certain digits that then either have to be 0 or 1. As such,
one can deduce that C corresponds to a countable union of cubes. Each such
specification due to the ni’s halves the area of the corresponding union of
cubes and thus for those sets the measures are equivalent. Those cylinders
in the form of C already generate the whole σ-algebra as Y is discrete. So,
we are done in one direction. In the other direction, one can show that using
countably many unions and intersections of those cylinders like C, one can
describe any half-cube in Z̃. This then completes the claim.
Now, by simply plugging all the definitions, we see that for x = (ym)m∈Z ∈
X̃ we get for n ∈ Z((

V SV −1
)

x
)

n

= ((V S) (0.y−1y−2y−3 . . . , 0.y0y1y2 . . .))n

= (V (y−1.y−2y−3 . . . − y−1, 0.0y0y1y2 . . . + 0.y−1))n

= (V (0.y−2y−3 . . . , 0.y−1y0y1y2 . . .))n

=

V

∑
m∈N

y−m−1 · 2−m,
∑

m∈N
y(m−1)−1 · 2−m


n

= yn−1

Thus, V SV −1 is the right shift on (X, B, µ).
Even though this shows that S is isomorphic to a right shift and thus inherits
all the above shown properties, we show each of the properties explicitly for
completeness: We have for measurable A ⊆ Z̃ with S−1(A) = A that V (A)
satisfies (V SV −1)−1(V (A)) = V (A), so

λ2(A) = µ (V (A)) ∈ {0, 1}

as V SV −1 is ergodic by the first exercise. In a similar vein, using the fact
that V SV −1 is strong mixing, for measurable A, B ⊆ Z̃ we have that

λ2(S−n(A) ∩ B) = µ(V (S−n(A) ∩ B))

= µ

((
V SV −1

)−n
(V (A)) ∩ V (B)

)
n→∞→ µ(V (A))µ(V (B))
= λ2(A)λ2(B).

Thus, S is ergodic and strong mixing.
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Exercise Sheet 5

1. This problem will deal with one particular equivalence in Theorem 8.3.
(a) For any bounded sequence (an)n≥0 ∈ RN the following are equivalent:

lim
N→∞

1
N

N−1∑
n=0

|an| = 0 ⇐⇒ lim
N→∞

1
N

N−1∑
n=0

|an|2 = 0.

Proof. Let us first assume that the limit on the right hand side holds. Then
the Cauchy-Schwarz inequality implies

1
N

N−1∑
n=0

|an| =
N−1∑
n=0

1
N

· |an| ≤
(

N−1∑
n=0

1
N2

) 1
2

·
(

N−1∑
n=0

|an|2
) 1

2

=
(

1
N

N−1∑
n=0

|an|2
) 1

2

→ 0, N → ∞.

Note that we didn’t use the fact that (an)n≥0 is bounded.
For the other direction, choose M > 0 such that |an| ≤ M for all n ∈ N. In
particular, we have that |an| /M ≤ 1 for all n ∈ N, so

1
N

N−1∑
n=0

|an|2

M
≤ 1

N

N−1∑
n=0

|an| → 0, N → ∞.

Hence, as 1/M is just a constant the desired follows.

(b) Let (X, B, µ) be a probability space. For any measure-preserving transform
T : X → X and any f, g ∈ L2(X), the following are equivalent:

lim
N→∞

1
N

N−1∑
n=0

∣∣∣∣∫
X

Un
T f · g d µ −

∫
X

f d µ

∫
X

g d µ

∣∣∣∣ = 0

⇐⇒ lim
N→∞

1
N

N−1∑
n=0

∣∣∣∣∫
X

Un
T f · g d µ −

∫
X

f d µ

∫
X

g d µ

∣∣∣∣2 = 0.

Proof. Set an :=
∫

X Un
T f · g d µ −

∫
X f d µ

∫
X g d µ for all n ∈ N. As

f, g ∈ L2(X), we get using the triangle inequality and Cauchy-Schwarz
inequality

|an| ≤
∣∣∣∣∫

X
Un

T f · g d µ

∣∣∣∣+ ∣∣∣∣∫
X

f d µ

∫
X

g d µ

∣∣∣∣
≤ ∥f∥L2 ∥g∥L2 + ∥f∥L1 ∥g∥L1

< ∞

since T is µ-preserving. So the sequence (an)n≥0 is bounded and we are
done by (a).
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2. Let (X, B, µ) be a probability space, T : X → X be µ-preserving, and let (ek)k≥1
be an orthonormal basis of L2(X) (possibly, C-valued). Then T is strongly mixing
if and only if for any k, m ≥ 1

lim
n→∞

∫
X

Un
T ekēm d µ =

∫
X

ek d µ

∫
X

ēm d µ,

where ēm is the complex conjugate of em.

Proof. Recall the following lemma which can be derived from Theorem 8.3:

Lemma A.3. Let (X, B, µ) be a probability space, and let T : X → X be µ-
preserving. Then T is strongly mixing if and only if for any f, g ∈ L2(X) (possibly,
C-valued) one has that

lim
n→∞

∫
X

Un
T fḡ d µ =

∫
X

f d µ

∫
X

g d µ,

where ḡ is the complex conjugate of g.

Using the equivalence, it is clear that if T is strongly mixing, we do get

lim
n→∞

∫
X

Un
T ekēm d µ =

∫
X

ek d µ

∫
X

ēm d µ

for all k, m ≥ 1. For the other direction, we will do an approximation argument:
Recall that every function f ∈ L2(X) can be uniquely represented as ∑j≥1 fjej for
some l2-sequence (fj)j≥1. So, fix any f, g ∈ L2(X), ε > 0 and let f = ∑

j≥1 fjej

and g = ∑
l≥1 glel be their respective representations. For k ∈ N, let f (k) be the

partial sum formed by the first k terms in the representation of f , and define g(m)

similarly for m ∈ N. Since (fj)j≥1 is an l2-sequence, we have

∥∥∥f − f (k)
∥∥∥

L2
=

 ∑
j≥k+1

f2
j

 1
2

→ 0, k → ∞

and the same holds for g and g(m). Fix k, m ∈ N such that∥∥∥f − f (k)
∥∥∥

L2
< ε,

∥∥∥g − g(m)
∥∥∥

L2
< ε.

For all n ≥ 0 we have that∣∣∣∣∫
X

Un
T f · ḡ d µ −

∫
X

f d µ

∫
X

ḡ d µ

∣∣∣∣
≤
∣∣∣∣∫

X
Un

T f · ḡ d µ −
∫

X
Un

T f · ḡ(m) d µ

∣∣∣∣ (⋆)

+
∣∣∣∣∫

X
Un

T f · ḡ(m) d µ −
∫

X
Un

T f (k) · ḡ(m) d µ

∣∣∣∣ (⋆⋆)
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+
∣∣∣∣∫

X
Un

T f (k) · ḡ(m) d µ −
∫

X
f (k) d µ

∫
X

ḡ(m) d µ

∣∣∣∣ (⋆ ⋆ ⋆)

+
∣∣∣∣∫

X
f (k) d µ

∫
X

ḡ(m) d µ −
∫

X
f d µ

∫
X

ḡ(m) d µ

∣∣∣∣ (⋆ ⋆ ⋆⋆)

+
∣∣∣∣∫

X
f d µ

∫
X

ḡ(m) d µ −
∫

X
f d µ

∫
X

ḡ d µ

∣∣∣∣ . (⋆ ⋆ ⋆ ⋆ ⋆)

We will use the Cauchy-Schwarz inequality multiple times:
• (⋆) is bounded from above by

∥Un
T f∥L2

∥∥∥ḡ − ḡ(m)
∥∥∥

L2
= ∥Un

T f∥L2

∥∥∥g − g(m)
∥∥∥

L2
≤ ε ∥f∥L2

as ∥Un
T f∥L2 = ∥f∥L2 .

• (⋆⋆) is bounded from above by∥∥∥Un
T

(
f − f (k)

)∥∥∥
L2

∥∥∥ḡ(m)
∥∥∥

L2
≤ ε

(
∥ḡ∥L2 +

∥∥∥ḡ(m) − ḡ
∥∥∥

L2

)
≤ ε (∥g∥L2 + ε) .

• (⋆ ⋆ ⋆) goes to zero as n goes to infinity since by bilinearity, we get∫
X

Un
T f (k) · ḡ(m) d µ =

k∑
j=1

m∑
l=1

fj ḡl

∫
X

Un
T ej · ēl d µ

n→∞→
k∑

j=1

m∑
l=1

fj ḡl

∫
X

ej d µ

∫
X

ēl d µ

=
∫

X
f (k) d µ

∫
X

ḡ(m) d µ.

• (⋆ ⋆ ⋆⋆) is bounded from above by∥∥∥ḡ(m)
∥∥∥

L2

∥∥∥f − f (k)
∥∥∥

L2
=
∥∥∥g(m)

∥∥∥
L2

∥∥∥f − f (k)
∥∥∥

L2
≤ ε (∥g∥L2 + ε) .

• (⋆ ⋆ ⋆ ⋆ ⋆) is bounded from above by

∥f∥L2

∥∥∥ḡ − ḡ(m)
∥∥∥

L2
= ∥f∥L2

∥∥∥g − g(m)
∥∥∥

L2
≤ ε ∥f∥L2 .

As ε > 0 was arbitrary,∣∣∣∣∫
X

Un
T f · g d µ −

∫
X

f d µ

∫
X

g d µ

∣∣∣∣ → 0, n → ∞.

Hence, T is strongly mixing.

3. Let X := [0, 1)2. Arnold’s cat map T : X → X is defined by

Tx :=
( {

x1 + x2}{
x1 + 2x2}

)
, x =

(
x1

x2

)
∈ R2,

where { · } is the fractional part of a real number. The goal of this exercise is to
show that T is strongly mixing. Recall that T is measure-preserving Exercise Sheet
1 for the Lebesgue measure which we will denote by µ.
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(a) We have for all n ∈ N that

T nx =
({

a2n−2x1 + a2n−1x2}{
a2n−1x1 + a2nx2}

)
, x =

(
x1

x2

)
∈ R2,

where (an)n≥0 is the Fibonacci sequence which is defined recursively as
a0 = a1 = 1 and an = an−1 + an−2 for n ≥ 2.

Proof. First, note that we can rewrite T as

Tx =
((

1 1
1 2

)
x

)
mod 1

.

To simplify the problem, note the following: If x̃ = x + h for some h ∈ Z2,
then T x̃ = Tx since multiplying h by that matrix gives again a vector in
Z2. So, we inductively have

T nx =
((

1 1
1 2

)n

x

)
mod 1

.

for all n ∈ N. For the rest of the proof, we will proceed by induction on
n ∈ N to show that (

1 1
1 2

)n

=
(

a2n−2 a2n−1
a2n−1 a2n

)
.

Then the claim follows directly by the above.
Now, the induction base is clear since a2 = 2. For the induction step
n⇝ n + 1, using the induction hypothesis, we see that(

1 1
1 2

)n+1

=
(

a2n−2 a2n−1
a2n−1 a2n

)(
1 1
1 2

)

=
(

a2n−2 + a2n−1 a2n−2 + 2a2n−1
a2n−1 + a2n a2n−1 + 2a2n

)

=
(

a2n a2n−1 + (a2n−2 + a2n−1)
a2n+1 a2n + (a2n−1 + a2n)

)

=
(

a2n a2n+1
a2n+1 a2n+2

)

=
(

a2(n+1)−2 a2(n+1)−1
a2(n+1)−1 a2(n+1)

)
.

This completes the proof.
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(b) For each k, l ∈ Z let ek,l : X → C be defined by

ek,l(x) = e2π i(kx1+lx2), x =
(

x1

x2

)
∈ R2.

Then we have for every n ∈ N and every p, q ∈ Z∫
X

Un
T ek,l · ēp,q d µ =

{
1, ka2n−2 + la2n−1 − p = ka2n−1 + la2n − q = 0
0, otherwise.

In particular,
∫

X Un
T ek,l · ēp,q d µ does not converge to zero if and only if

there exists an increasing sequence (nj)j≥1 ∈ NN such that

ka2nj−2 + la2nj−1 − p = ka2nj−1 + la2nj − q = 0 (2)

for any j ≥ 1.

Proof. Fix k, l, p, q ∈ Z and n ∈ N. Recall that for m ∈ Z, m ̸= 0, we have∫ 1

0
e2π i m·z d z =

[ 1
2π i m

e2π i m·z
]1

0
= 0.

Also note that the integrand is 1 and thus the integral 1 if m = 0. So, using
Fubini’s theorem and (a), we get∫

X
Un

T ek,l · ēp,q d µ

=
∫ 1

0

∫ 1

0
e2π i(k{a2n−2x1+a2n−1x2}+l{a2n−1x1+a2nx2}) e−2π i(px1+qx2) d x1 d x2

=
∫ 1

0

∫ 1

0
e2π i(k(a2n−2x1+a2n−1x2)+l(a2n−1x1+a2nx2)) e−2π i(px1+qx2) d x1 d x2

=
∫ 1

0

∫ 1

0
e2π i x1(ka2n−2+la2n−1−p)+2π i x2(ka2n−1+la2n−q) d x1 d x2

=
∫ 1

0
e2π i x1(ka2n−2+la2n−1−p) d x1

∫ 1

0
e2π i x2(ka2n−1+la2n−q) d x2

=
{

1, ka2n−2 + la2n−1 − p = ka2n−1 + la2n − q = 0
0, otherwise.

The second equality holds since e2π i(x+h) = e2π i x for any x ∈ R, h ∈ Z.

(c) If
∫

X Un
T ek,l · ēp,q d µ does not converge to zero as n → ∞, then using (2)

and the fact that

lim
n→∞

an−1
an

= 2
1 +

√
5

∧ lim
n→∞

an = +∞,

we can conclude that k = l = p = q = 0. In particular, T is strongly mixing.
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Proof. Just for fun, let’s first show the facts: The latter is trivial as the
Fibonacci sequence is from the second term onwards strictly increasing by
at least one. For the former, one can check that the sequence of ratios
(an/an−1)n∈N is converging to some positive number φ satisfying

φ = lim
n→∞

an

an−1
= 1 + lim

n→∞
1

an−1
an−2

= 1 + 1
φ

.

In particular, φ2 = φ + 1, so

φ ∈
{

1 +
√

5
2 ,

1 −
√

5
2

}

and thus φ = (1 +
√

5)/2 as φ has to be non-negative.
Now, if

∫
X Un

T ek,l · ēp,q d µ does not converge to zero as n → ∞ for some
k, l, p, q ∈ Z, then there must exist an increasing sequence (nj)j≥1 satisfying
(2). So, in particular, we have

k ·
a2nj−2

a2nj−1
+ l = p

a2nj−1
∧ k ·

a2nj−1

a2nj

+ l = q

a2nj

(3)

for any j ≥ 1. For j → ∞, the first identity of (3) gives

k

φ
+ l = lim

j→∞

(
k ·

a2nj−2

a2nj−1
+ l

)
= 0 =⇒ k = −φl.

But φ is irrational, so the equality can only hold for k = l = 0. This
immediately gives us that p = q = 0 from (3). Thus, k = l = p = q = 0.
This actually shows that for all k, l, p, q ∈ Z

lim
n→∞

∫
X

Un
T ek,lēp,q d µ =

∫
X

ek,l d µ

∫
X

ēp,q d µ,

since, by a similar calculation as before, we have∫
X

ek,l d µ =
∫ 1

0
e2π i kx1 d x1

∫ 1

0
e2π i lx2 d x2

=
{

1, k = l = 0
0, otherwise

and the same for ēk,l for all k, l ∈ Z. Thus, as (ek,l)k,l∈Z is an orthonormal
basis of L2(X), it follows that T is strongly mixing by Exercise 2.
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4. Let (X, B, µ) be a probability space, and let T : X → X be µ-preserving. Let
T × T : X × X → X × X be defined by (T × T )(x, y) = (Tx, Ty) for x, y ∈ X. Let
B ⊗ B := σ({A × B : A, B ∈ B}) be the product σ-algebra on X × X and let µ ⊗ µ,
defined by (µ ⊗ µ)(A × B) = µ(A)µ(B) for A, B ∈ B, be the product measure on
(X × X, B ⊗ B). Then T is strongly mixing if and only if T × T is strongly mixing
on (X × X, B ⊗ B, µ ⊗ µ).

Proof. For the one direction, let T × T be strongly mixing. Fix A, B ∈ B. Then
A × X, B × X ∈ B ⊗ B. Thus, on one hand, we get

(µ ⊗ µ)
(
(T × T )−n(A × X) ∩ (B × X)

)
= (µ ⊗ µ)

(
(T −n(A) × X) ∩ (B × X)

)
= (µ ⊗ µ)

((
T −n(A) ∩ B

)
× X

)
= µ

(
T −n(A) ∩ B

)
µ(X)

= µ
(
T −n(A) ∩ B

)
for all n ∈ N due to T −n(X) = X. On the other hand, we have

lim
n→∞

(µ ⊗ µ)
(
(T × T )−n(A × X) ∩ (B × X)

)
= (µ ⊗ µ)(A × X)(µ ⊗ µ)(B × X)

= µ(A)µ(B)µ(X)2

= µ(A)µ(B).

Thus, limn→∞ µ (T −n(A) ∩ B) = µ(A)µ(B) and T is strongly mixing.
For the other direction, let T be strongly mixing. We will use Exercise 2: Let
(ek)k≥1 be an orthonormal basis of L2(X). Then, (ek,l)k,l≥1, defined by ek,l :=
ek(x)el(y) for x, y ∈ X, form an orthonormal basis of L2(X × X). Using Fubini’s
theorem and T being strongly mixing, we get

lim
n→∞

∫
X×X

Un
T ×T ek,l · ēp,q d (µ ⊗ µ)

= lim
n→∞

∫
X×X

ek(T nx)el(T ny) · ēp(x)ēq(y) d (µ ⊗ µ)(x, y)

= lim
n→∞

(∫
X

ek(T nx) · ēp(x) d µ(x)
∫

X
el(T ny) · ēq(y) d µ(y)

)
= lim

n→∞

(∫
X

Un
T ek · ēp d µ

∫
X

Un
T el · ēq d µ

)
=
(∫

X
ek d µ

∫
X

ēp d µ

)(∫
X

el d µ

∫
X

ēq d µ

)
=
∫

X×X
ek,l d (µ ⊗ µ)

∫
X×X

ēp,q d (µ ⊗ µ)

for all k, l, p, q ∈ N. Thus, by Exercise 2, T × T is strongly mixing.
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B Further Topics and Concluding Remarks
In this chapter, I (Michael) want to tidy some loose ends and mention some related
topics that were not discussed in class but are of interest to me.

B.1 Furstenberg’s Proof of Szemerédi’s Theorem

In the intersection of number theory and combinatorics, one of the most fascinating
theorems that has led to advances in both fields is Szemerédi’s theorem:

Theorem B.1 (Szemerédi 1975). For k ≥ 2, N ∈ N, let rk(N) be the size of the largest
subset of {1, 2, . . . , N} without an arithmetic progression of length k. Then

lim
N→∞

rk(N)
N

= 0.

I have seen a proof of the special case k = 3 using graph theory. Another quite different
way was established by Furstenberg who showed this theorem using ergodic theory. A
good expository paper on this is given by Yufei Zhao.

B.2 Any two-dimensional hyperbolic toral Automorphism is mixing

In Exercise Sheet 5, we have shown that Arnold’s cat map is strongly mixing via a
variant of Theorem 8.3. However, it was not immediately clear from the proof how one
should proceed for general A ∈ SL2(Z)29, namely when those induce a strong mixing
transformation. In the notation in Exercise Sheet 1, Ivan conjectured the following:

Conjecture B.2 (Ivan’s conjecture). A induces a strong mixing transformation if and
only if b ̸= 0, c ̸= 0 and at most one of a, d is zero.

The reasoning behind this claim is simple: If at least one of b and c is zero, then we just
are (Modulo reflections) shearing in the x- or y-direction, so those should not induce
(strongly) mixing transformations. Similarly, not both a and d can be zero since this
would give us another reflection.
It turns out, however, that those are not the only cases where A doesn’t induce a mixing
transformation. I thought that maybe using some explicit formula for the n-th powers
of 2 × 2 matrices, one can prove the general case with the same approach as in Exercise
Sheet 5. And indeed, there are different formulas for that:

• A Combinatorial Formula for Powers of 2 × 2 Matrices by Konvalina establishes a
combinatorial formula for the entries of An only using the entries of A.

• The paper Combinatorial Identities deriving from the n-th Power of a 2×2 Matrix
by McLaughlin establishes a formula using the determinant and trace of the matrix.

29One may also write GL2(Z), it doesn’t matter here.
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• The paper The n-th Power of a 2 × 2 Matrix by Williams establishes a formula
using the eigenvalues of the matrix.

As Konvalina’s formula is a bit unwieldy and Williams’s formula not directly applicable
to our problem, I tried to show Ivan’s conjecture using McLaughlin’s formula. As the
determinant is already given to be ±1, I made a case distinction on the trace. To proceed
as in the proof for Arnold’s cat map, I plotted in Maple whether for suitable conditions
the limit of ratios of entries seemed to converge to a non-zero, irrational number and
that overall the entries would (in value) blow up to infinity. At first, it was in good
agreement with what Ivan conjectured. However, when considering the trace having
value two, I realized that there are some matrices like(

3 2
−2 −1

)
that also seem to not induce strongly mixing transformations. In particular, using
McLaughlin’s formula, one can establish this fact by showing that for some k, l, p, q ∈ Z∫

X
Un

T ek,l · ēp,q d µ

doesn’t converge to zero, where

X = [0, 1)2, µ = λ2, ek,l(x) = e2π i(kx1+lx2), x =
(

x1

x2

)
∈ R2.

So, I conjectured that the entries of A didn’t matter directly, but instead the trace.
Namely, I conjectured that A induces a mixing transformation if and only if tr(A) ≥ 3.
As it turns out, this is true and is actually known in the literature (e.g. Introduction to
Dynamical Systems by Brin and Stuck): When looking at the n-dimensional analogue
of the problem with A not having an eigenvalue of absolute value 1, the corresponding
transformation is called a hyperbolic toral automorphism and is known to always be
strongly mixing.30 Anyhow, let us show this fact for two dimensions using William’s
formula.

Theorem B.3. Let A ∈ SL2(Z) and let TA : X → X be the corresponding µ-preserving
transformation as defined in Example 3.3.2. Then TA is strongly mixing if and only if
|tr(A)| ≥ 3. In particular, if |tr(A)| ≤ 2, then TA is also not ergodic.

Proof. Let us first show the last statement first. For a 2 × 2 matrix A, it is known that
the characteristic polynomial is given by

χA(λ) = λ2 − tr (A) λ + det(A).

So, for A ∈ SL2(Z), the eigenvalues are

tr(A) ±
√

tr(A)2 − 4
2

30This is also stated on Wikipedia but of course I missed this. . .
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Hence, the eigenvalues are ± i, ±(1/2 ± i
√

3/2) for |tr (A)| = 0, |tr (A)| = 1 respectively.
So, if |tr (A)| ≤ 1, then there exists m ∈ {4, 6} such that the m-th power of its eigenvalues
are 1. In particular, as there are two distinct eigenvalues for |tr (A)| ≤ 1, A is in that
case diagonalizable, so we have that Am is the identity matrix. Now, as in Exercise
Sheet 5, one can establish that for all n ∈ N

T n
A =

({
anx1 + bnx2}{
cnx1 + dnx2}

)
, x =

(
x1

x2

)
∈ R2,

where
An =:

(
an bn

cn dn

)
.

In particular, it follows by Fubini’s theorem that for k, l, p, q ∈ Z∫
X

Un
TA

ek,l · ēp,q d µ =
{

1, kan + lcn − p = kbn + ldn − q = 0
0, otherwise.

Now, if we choose k = l = p = q = 1, then

lim inf
N→∞

1
N

N−1∑
n=0

∫
X

Un
TA

ek,l · ēp,q d µ ≥ lim inf
N→∞

1
N

N−1∑
n=0

1m|n

≥ lim inf
N→∞

1
N

N

m

= 1
m

.

On the other hand, recall that for general k, l ∈ Z we have∫
X

ek,l d µ =
{

1, k = l = 0
0, otherwise,

meaning that for our choice k = l = p = q = 1

lim
N→∞

1
N

N−1∑
n=0

∫
X

Un
TA

ek,l · ēp,q d µ ̸=
∫

X
ek,l d µ

∫
X

ēp,q d µ.

Thus, by Theorem 8.3, TA is not ergodic if |tr (A)| ≤ 1.
For tr(A) = ±2, our argument doesn’t necessarily work since it is not generally true that
such A are diagonalizable. Hence, we will show that for a certain choice of k, l, p, q ∈ Z,
where at least one is non-zero, we have that∫

X
U2g+1

TA
ek,l · ēp,q d µ = 1

for all g ∈ N, giving us

lim inf
N→∞

1
N

N−1∑
n=0

∫
X

Un
TA

ek,l · ēp,q d µ ≥ lim inf
N→∞

1
N

N−1∑
n=0

12|(g−1)

76



B Further Topics and Concluding Remarks

≥ lim inf
N→∞

1
N

⌊
N

2

⌋
= 1

2 .

This, again, would imply that TA is not ergodic.
Now, in the case where tr(A) = ±2, the discriminant is zero, so there is only one
eigenvalue, 1 or −1. Using William’s formula, we thus see that

A2g+1 = (2g + 1) · A ∓ 2g · I2 = (2g + 1) · (A − I2) ± I2

for tr(A) = ±2, g ∈ N. This means that
∫

X U2g+1
TA

ek,l · ēp,q d µ is one if and only if

p = k · ((2g + 1) · (a − 1) ± 1) + l · (2g + 1)c = (2g + 1) · (k(a − 1) + lc) ± k

∧ q = k · (2g + 1)b + l · ((2g + 1)(d − 1) ± 1) = (2g + 1) · (kb + l(d − 1)) ± l.

So, both (k, l) = (−c, a−1) and (k, l) = (d−1, −b) would together with (p, q) = (±k, ±l)
lead to the integral being one for all g ∈ N. Since we can exclude the trivial case where
A = I2, at least one of those choices would lead to at least one of k, l, p, q being non-zero.
This shows that A ∈ SL2(Z) with tr (A) = ±2 induce non-ergodic transformations.
Consider now the case where |tr (A)| ≥ 3. We first make some observations: Since

tr (A)2 − 4 = (tr (A) − 1)2 + 2 tr (A) − 1 − 4 ≥ (tr (A) − 1)2 + 1,

tr (A) cannot be a perfect square. Thus, the eigenvalues of A are irrational. Let the
eigenvalues of A be α, β ∈ R where |α| < |β|. Note that there absolute values must differ
since the discriminant is positive. Furthermore, let

Ã = A − βI2
α − β

, Â = A − αI2
β − α

.

Now, as described in Exercise Sheet 5, it suffices to show that if
∫

X Un
T ek,l · ēp,q d µ does

not converge to zero as n → ∞, then k = l = p = q = 0: If
∫

X Un
TA

ek,l · ēp,q d µ does not
converge to zero, then it means that there is a strictly increasing sequence (nj)j≥1 ∈ NN

such that

k · (αnj Ã1,1 + βnj Â1,1) + l · (αnj Ã2,1 + βnj Â2,1) = p

∧ k · (αnj Ã1,2 + βnj Â1,2) + l · (αnj Ã2,2 + βnj Â2,2) = q.

It is clear that |βn| → ∞ for n → ∞. Furthermore, αn/βn → 0 for n → ∞. This can
be shown elementary, which we will showcase for when tr(A) is positive: If the trace is
positive, then

α = tr(A) −
√

tr(A)2 − 4
2 , β = tr(A) +

√
tr(A)2 − 4
2 .

77



B Further Topics and Concluding Remarks

By squaring both sides, it is easy to verify that 3 < tr(A) < 2 +
√

tr(A)2 − 4, so
0 < α < 1. Meanwhile, β > tr (A) /2 > 1. Thus, α/β ∈ (0, 1) and limn→∞(α/β)n = 0 as
desired. So, if we divide by βnj , we get for j → ∞

k · a − α

β − α
+ l · c − α

β − α
= k · Â1,1 + l · Â2,1 = 0

∧ k · b − α

β − α
+ l · d − α

β − α
= k · Â1,2 + l · Â2,2 = 0.

Multiplying by (β − α) gives

(ak + cl) − α(k + l) = 0 ∧ (bk + dl) − α(k + l) = 0.

Since α is irrational, this can only be true if k + l = 0. If k = l = 0, we are done since
that would also imply p = q = 0. Otherwise, we have k = −l and thus a = c and b = d.
But then det(A) = ad − bc = ad − ad = 0. �

So, only the first case is possible and we are done.

B.3 Chaos Games and Iterated Function Systems

When I was in high school, I remember being fascinated by generating fractals using
randomness. One of those ways to generate fractals is something known as diffusion
limited aggregation.31 The basic idea was to simulate the formation of, say, a snowflake
by starting out with one “ice” particle on the grid, say a finite window of Z2. One would
then simulate moving water particles in the air as symmetric random walks that would
then “freeze” as soon as they touched an “ice” particle. I had a lot of fun writing a
program to construct the fractals that would come out, so much so that I would use it
as ornamentation on a gift card I gave to my friend Martin’s birthday.
The other, more structured thing I would become infatuated with is the so-called chaos
game. Say, you start out with an equilateral triangle and then color a random point
inside the triangle black. Then, you move to another point by choosing with equal
probability one of the vertices of the triangle and then moving half-way towards the
chosen vertex. If you iterate this process, surprisingly enough, the Sierpinski triangle
emerges. A good video showcasing this phenomenon can be found on YouTube. This
really blew me away when I was younger and, as before, I took a lot of pleasure in
generating these fractals by slightly tweaking the parameters.
The deterministic analogue of chaos games are iterated function systems. For the
particular chaos game described above, one can again find on YouTube a video on the
corresponding iterated function system. And while for iterated function systems it seems
somewhat intuitive that you generate the Sierpinski triangle, I haven’t found something
convincing me that the same was true for the chaos game. One of my hopes in this
course was to finally understand this. And while this topic wasn’t covered in class, I can
say that I finally feel more confident in diving into the literature.

31At that time, I didn’t know it was called that.
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