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ABSTRACT

At the middle of the last century, discrete mathematics and combinatorics established

themselves as foundational areas of mathematics with numerous applications, especially

in computer science and operations research. One particularly active field is extremal

combinatorics and specifically extremal graph theory. There, one is typically interested

in determining the minimum density (measured by the number of edges for example) to

always force some structure inside the host graph.

In this thesis, we are interested in generalizing one of the classical results in extremal

graph theory: Dirac’s theorem. Informally, if our graph has an even number of vertices,

Dirac’s theorem states that if every vertex has at least half of the vertices as neighbors,

then the graph must contain a perfect matching. This result is tight and was one of the

starting points of what are now called Dirac-type results.
As more and more problems have been resolved in the graph setting, interest

naturally shifted to uniform hypergraphs. In light of Dirac’s theorem, a lot of work

has been devoted into determining the minimum degree or minimum codegree threshold
of hypergraphs matchings, provided that the number of vertices satisfies the right

divisibility conditions.

However, recently a new generalization was proposed: If the fundamental property

of a perfect matching is that every vertex is covered by exactly one edge, why not consider

the structure where every pair of vertices is covered by exactly one edge in the 3-uniform

case? These objects are called Steiner triple systems and are a type of combinatorial design.

In this thesis, we will give a detailed overview on the first paper making progress in

determining the minimum codegree threshold of Steiner triple systems. Furthermore, we

will improve on the results by finding a better upper bound on the minimum codegree

threshold for, essentially, the LP-relaxation of Steiner triple systems. In particular,

our results imply that if n is sufficiently large and satisfies some necessary divisibility

conditions, then a 3-uniform, n-vertex hypergraph H contains a Steiner triple system if

every pair of vertices forms an edge in Hwith at least 0.858n other vertices.

iii



CONTENTS

DECLARATION OF AUTHORSHIP i

ACKNOWLEDGEMENTS ii

ABSTRACT iii

1 INTRODUCTION 1

1.1 Dirac’s theorem and its generalizations . . . . . . . . . . . . . . . . . . . 1

1.2 Lee’s results and conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 PRELIMINARIES 5

2.1 Terminology and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Combinatorial designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 The resolution of the existence conjecture . . . . . . . . . . . . . . . . . . 8

2.4 The Nash-Williams conjecture . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 OVERVIEW OF LEE’S RESULTS 14

3.1 Lower bound construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Outline of Lee’s main theorem . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 IMPROVING THE FRACTIONAL THRESHOLD 30

4.1 Comparison of previous approaches . . . . . . . . . . . . . . . . . . . . . 30

4.2 Edge-gadgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 The weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Reformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 CONCLUDING REMARKS 52

5.1 Moving towards Conjecture 1.6 . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Variations and strengthenings . . . . . . . . . . . . . . . . . . . . . . . . . 56

BIBLIOGRAPHY 61

A EXPLICIT FRACTIONAL STEINER TRIPLE SYSTEMS 65

B PROBABILISTIC INEQUALITIES 70

C GUROBI IMPLEMENTATIONS 71

C.1 Solving (P3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

C.2 Computing fractional Steiner triple systems . . . . . . . . . . . . . . . . . 72

D THRESHOLD FOR ODD PERFECT MATCHINGS 75

iv



§ 1. INTRODUCTION

Extremal graph theory is one of the most important and active research areas of

combinatorics. Classically, questions can be usually categorized into three types:

Turán-type problems ask how dense1
a graph can be without containing a certain

substructure. In other words, we want to know at what density the substructure always

emerges. Meanwhile, Dirac-type problems study the conditions under which the existence

of a spanning structure in the graph are guaranteed. Typically, as density purely given

by the number of edges is generally not sufficient for these problems, minimum degree

conditions are considered. Lastly, there are decomposition problems, where one is interested

in conditions such that the edges of the graph can be partitioned into copies of a fixed

substructure or family of substructures.

As a lot of progress for the graph case has been made, it is only natural to consider

more generally hypergraphs with a special focus on uniform hypergraphs. However, it

turns out that the problems become much harder in the hypergraph setting. For instance,

while the Turán-density is completely determined for all graphs with the infamous

Erdős-Stone theorem ([15]), it is still unknown what the exact Turán-density of the

tetrahedron, the 3-uniform hypergraph on four vertices with four edges, is.

Following this line of research, we present some new results about Dirac-type

problems in the 3-uniform hypergraph setting.

1.1 DIRAC’S THEOREM AND ITS GENERALIZATIONS

Arguably the most natural spanning structure is a Hamiltonian cycle. As determining

whether a graph contains such a cycle is a NP-complete problem (see [16, Thm. 3.4]),

research is instead devoted to finding sufficient conditions for their existence. One of the

first and seminal Dirac-type results, Dirac’s theorem, gives such a sufficient condition.

Theorem 1.1 (Dirac 1952, [9]). Every graph with n ⩾ 3 vertices and minimum degree at

least n/2 has a Hamiltonian cycle.

Note that the minimum degree condition is best possible: K⌊n/2⌋−1,⌈n/2⌉+1 has

minimum degree ⌊n/2⌋− 1 and is bipartite. Hence, every cycle in the graph contains

equally many vertices of both partition classes. However, as the partition classes differ in

size, there can’t be a Hamiltonian cycle.

By taking every second edge in the Hamiltonian cycle, Dirac’s theorem implies a

sufficient minimum degree condition for the existence of perfect matchings under the

necessary parity conditions.

Corollary 1.2. Every graph with n ⩾ 2 vertices, n ≡ 0 (mod 2), and minimum degree

at least n/2 has a perfect matching.

1
In terms of the number of edges.
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Again, the minimum degree condition is best possible by the aforementioned example.

In light of higher uniformities, the question how Dirac’s theorem for Hamiltonian

cycles should be generalized is not clear at first. Hence, there have been numerous results

extending the theorem to so-called loose or tight cycles. Meanwhile, the extension for the

perfect matching result seems more obvious. Indeed, a lot of results (see for instance

[34, 44, 45, 18, 49, 29, 30, 22]) studied sufficient conditions for the existence of perfect

hypergraph matchings, where every vertex is now covered by exactly one hyperedge.

Inspired by Linial’s presentation on high-dimensional combinatorics (see [37]), Lee

proposes a different generalization. Namely, going from 2-uniformity to 3-uniformity, if

the primary property of a perfect matching is that every vertex
2

is covered by an edge,

why not consider the structure where instead every pair of vertices
3

gets covered by a

hyperedge?

1.2 LEE’S RESULTS AND CONJECTURE

Figure 1.1: The Fano plane – the most prominent example of a Steiner triple system

These structures are known as Steiner triple systems and are of independent interest

in the theory of combinatorial designs. For such a design to exist, the corresponding

parameters must satisfy certain divisibility conditions.
4

For instance, for there to be a

perfect matching on n vertices, nmust be an even number. Similarly, it turns out that

Steiner triple systems can only exist for n ≡ 1, 3 (mod 6) and then have n(n − 1)/6
edges.

5

Generally speaking, it was clear that these divisibility conditions are necessary for

a design to exist. It was a long-standing problem, however, whether these conditions

were sufficient for the existence of designs. Only in recent years, using tools such as the

absorption method or the iterative absorption method did Keevash (see [27]) and Glock, Kühn,

Lo, Osthus (see [17]) independently gave an affirmative answer to that question if the

parameters are sufficiently large.

With the existence conjecture now proven, interest shifted to proving the existence of

designs – in our case a Steiner triple system – in more restrictive settings. Indeed, it turns

out that both proofs of the existence conjecture already yield the existence of spanning

2
Which one may consider a 0-dimensional object.

3
Which one may consider 1-dimensional.

4
See Fact 2.4.

5
See Corollary 2.5 and Lemma 2.6.



3 INTRODUCTION

Steiner triple systems in n-vertex, 3-uniform hypergraphs that have sufficiently high

minimum codegree for sufficiently large n satisfying n ≡ 1, 3 (mod 6). However, the

minimum codegree condition obtained by either proof is close to the maximum codegree

possible, rendering them far from optimal.

In [36], Lee establishes a significant improvement on the minimum codegree threshold for

Steiner triple systems in 3-uniform hypergraphs. In particular, he proves the following:

Theorem 1.3 (Lee 2023, [36, Thm. 1.2]). For any ε > 0, there exists n0 = n0(ε) such that

the following holds for every n ⩾ n0 satisfying n ≡ 1, 3 (mod 6): Let H be a 3-uniform

hypergraph on n vertices. If the minimum codegree of H is at least(
3+

√
57

12
+ ε

)
n = (0.879 . . .+ ε)n,

then H contains a Steiner triple system.

In fact, Lee proves in [36] a transversal or rainbow version of this result:

Theorem 1.4 (Lee 2023, [36, Thm. 1.6, Thm. 1.8]). For any ε > 0, there exists n0 = n0(ε)
such that the following holds for every n ⩾ n0 satisfying n ≡ 1, 3 (mod 6): Let

H =
{
H1, . . . , Hn(n−1)/6

}
be a family of 3-uniform hypergraph on n vertices sharing

the same vertex set V . If the minimum codegree of Hi is at least(
3+

√
57

12
+ ε

)
n = (0.879 . . .+ ε)n

for all i ∈ [n(n− 1)/6], then there exists a transversal Steiner triple system S. Specifically,

the vertex set of S is V and there exists a bĳective function φ : E(S) −→ [n(n− 1)/6] such

that e ∈ E(Hφ(e)) for all e ∈ E(S).

Remark 1.5. Unlike with perfect hypergraph matchings (see [18]), no such condition can

be established purely using the minimum degree. Indeed, the 3-uniform hypergraph H

where all possible hypergraphs are present except for the ones containing a fixed pair p

has minimum degree(
v(H) − 1

2

)
− (v(H) − 2) = (1+ o(1))

(
v(H)

2

)
,

but does not contain a Steiner triple system as there is no edge covering p.

Though Theorem 1.4 is a big improvement, Lee conjectures that the minimum

codegree threshold for Steiner triple systems is actually 3n/4+ C for some constant C:

Conjecture 1.6 (Lee 2023, [36, Conj. 7.1]). There is a constant n0 ∈ N and C ∈ R
such that the following holds for all n ⩾ n0 satisfying n ≡ 1, 3 (mod 6): Let H ={
H1, . . . , Hn(n−1)/6

}
be a family of 3-uniform hypergraph on n vertices sharing the

same vertex setV . If the minimum codegree ofHi is at least 3n/4+C for all i ∈ [n(n−1)/6],
then there exists a transversal Steiner triple system S.

This conjectured minimum codegree would be optimal as evident by the following

construction:
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Lemma 1.7 (Lee 2023, [36, Prop. 1.7]). For every n ⩾ 3with n ≡ 1, 3 (mod 6), there is

an n-vertex 3-uniform hypergraph Hwith

3n

4
−
7

2
⩽ δ2(H) ⩽ ∆2(H) ⩽

3n

4
+
3

2

that does not contain a Steiner triple system.

Apart from this construction, there are other reasons to believe that (3/4+ o(1))n is

at least asymptotically the correct minimum codegree threshold, which we will expand

on in later chapters.

1.3 MAIN RESULTS

The goal of this thesis is twofold. First, after some preliminaries in Chapter 2, we will

give a detailed overview of Lee’s results and provide sketches to the main proofs in

Chapter 3. Afterwards, in Chapter 4, we will quantitatively improve on Theorem 1.4

by improving estimates on the so-called fractional threshold for Steiner triple systems, a

parameter on which Lee’s proof heavily depends. In particular, we show:

Theorem 1.8. Let x∗ be the unique root of the polynomial p(x) = 8x3− 22x2+ 10x− 1 in

[0, 1/6]. Then, Theorem 1.4 is true even if the minimum codegree of each Hi is at least

(1− x∗ + ε)n = (0.8578 . . .+ ε)n.

Lastly, we propose some further directions, both in regards to solving Conjecture 1.6

but also possible generalizations and variations.



§ 2. PRELIMINARIES

2.1 TERMINOLOGY AND NOTATION

We expect that the reader has a decent background in graph theory. For all notation not

defined here, we refer to [8] and note that all (hyper-)graphs considered are simple
1

and

finite, unless explicitly stated otherwise. While some of the following notation is also

adapted from [36], some of the conventions were changed.

• For integers a, b ∈ Z, a ⩽ b, we let [a, b] = {n ∈ N : a ⩽ n ⩽ b}.2 In particular, we

set [n] = [1, n] for all n ∈ N.

• For a set X and k ∈ N0, we let X(k) = {Y ⊆ X : |Y| = k}.
• For a ∈ R and b ⩾ 0, we think of a±b as the real interval [a−b, a+b]. Additionally,

we set (a± b)c = [(a− b)c, (a+ b)c] for c > 0.

• For a hypergraph H, we set v(H) = |V(H)| and e(H) = |E(H)|.

• Let q ∈ N. We call a hypergraph H q-uniform if E(H) ⊆ V(H)(q).

For the remainder of this summary, let H always denote a q-uniform hypergraph.

• Given H as above, we will think of NH as the function

q⋃
r=0

V(H)(r) −→
q⋃
r=0

P
(
V(H)(r)

)
u 7−→ {e \ u : u ⊆ e ∈ E(H)}

and refer to NH(u) as the neighborhood of u. In other words, NH(u) is the set of

(q− |u|)-subsets of V(H) that form an edge with u.

• degH :
⋃q
r=0 V(H)

(r) −→ N0 is then given by degH(u) = |NH(u)| for all u ⊆ V(H)
with |u| ⩽ q. Additionally, for u ∈ V(H), we will refer to degH(u) as the degree of
u, and for a pair p ∈ V(H)(2), we will refer to degH(p) as the codegree of p.

• As a shorthand, we also define

δi(H) = min

u∈V(i)
degH(u), ∆i(H) = max

u∈V(i)
degH(u)

for all i ∈ [0, q] and refer to them as the minimum i-degree and maximum i-degree
of H respectively. We will also refer to them as the minimum and maximum degree
for the case i = 1 and, in the case i = 2, as the minimum and maximum codegree
respectively.

1
Though all of the concepts below can be extended to multi-hypergraphs by using multi-sets.

2
Whether [a, b] denotes an integer interval or real interval will always be clear from context.
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• Additionally, as we are occasionally interested in the minimum i-degree among all

i-sets covered by an edge, we define the essential minimum i-degree to be

δess

i (H) = min

u∈V(i) : degH(u)>0
degH(u)

for all i ∈ [0, q]. Similar to before, we will refer to δess

i (H) as the essential minimum
degree for i = 1 and essential minimum codegree for i = 2.

• Sometimes, for i ∈ [0, q], it will also be useful to think of the i-degree restricted to a

subset of vertices. Hence, we define for an i-set p ∈ V(H)(i) and subset U ⊆ V(H)

degH(p;U) =
∣∣∣U(q−i) ∩NH(p)

∣∣∣ .
• To understand the structure induced by the neighborhood of u ⊆ V(H), 1 ⩽ |u| ⩽ q,

we define the link of u (with respect to H) to be the (q − |u|)-uniform graph L(u)
given by

V(L(u)) = V(H) \ u, E(L(u)) = {e \ u : u ⊆ e ∈ E(H)} .

• To “go down a uniformity”, we define ∂H as the (q− 1)-uniform hypergraph with

V (∂H) = V(H), E (∂H) =
{
e ∈ V(q−1) : degH(e) ⩾ 1

}
and refer to ∂H as the shadow of H.

• As another short hand, we set Kr(H) =
{
K ⊆ H : K ≃ K(q)

r

}
for r ∈ N.

• Lastly, we say that H is linear if ∆2(H) ⩽ 1. In other words, hyperedges intersect at

most in one vertex.

If the ambient hypergraph H is clear from context, we will also drop the subscript

and write deg for example instead of degH. In addition, if H is actually a graph, i.e.

q = 2, then we write δ for δ1.

Arguably less standard is the notion of weighted subhypergraphs which are used in

the proof of Theorem 1.4. Roughly speaking, by identifying subhypergraphs of a given

hypergraph H via mappings of the type E(H) −→ {0, 1}, weighted subhypergraphs are

the generalization where fractional values are allowed for the mappings.

Definition 2.1 (Weighted subhypergraphs, [36, Sec. 2.2]). Let H be a q-uniform hyper-

graph. We call a function ψ : E(H) −→ [0, 1] a weighted subhypergraph of H. For u ⊆ V(H),
|u| ⩽ q, we define

deg
ψ
H(u) =

∑
u⊆e

ψ(e)

and refer to it as the weighted |u|-degree of u or simply the weight of u. Furthermore, for

i ∈ [0, q], we define δ
ψ
i (H) and ∆

ψ
i (H) analogously to δi(H) and ∆i(H) by simply letting

deg
ψ
H play the role of degH. Lastly, we set

∥ψ∥1 =
∑

e∈E(H)

ψ(e), ∥ψ∥∞ = max

e∈E(H)
ψ(e).

Remark 2.2. As before, if H is clear from context, we may drop the subscript for

deg
ψ
H. Similar conventions used for hypergraphs will also be employed for weighted

subhypergraphs. Also, in a slight abuse of notation, we will use these conventions as

long as the domain of ψ is a subset of R.
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2.2 COMBINATORIAL DESIGNS

In this section, we will define and show some basic properties of combinatorial designs.
Around these objects, two distinct communities in combinatorics have formed. One

considers them special types of set families, the other hypergraphs with particular

properties. While these viewpoints are equivalent, different questions are of interest.

For us, it is more natural to take a hypergraph point of view.

Definition 2.3 ((n, q, r, λ)-design). Let n ⩾ q > r ⩾ 1, λ ⩾ 1 and H be an n-vertex,

q-uniform hypergraph. We call H an (n, q, r, λ)-design if every r-subset of vertices is

contained in exactly λ hyperedges. In other words, δr(H) = ∆r(H) = λ. In the case of

λ = 1, we will also refer to the given design as a Steiner system or more concretely an

(n, q, r)-Steiner system.
3

Note that perfect matchings in an n-vertex graph correspond to (n, 2, 1, 1)-designs.

More generally, perfect matchings in an n-vertex, q-uniform hypergraph correspond

to (n, q, 1, 1)-designs. Lee’s question then deals with (n, 3, 2)-Steiner systems, which

are also called Steiner triple systems. As with perfect matchings, the existence of an

(n, q, r, λ)-design necessitates certain divisibility conditions.

Fact 2.4 (Divisibility conditions). If there exists an (n, q, r, λ)-design, then we must have

for all 0 ⩽ i ⩽ r− 1 (
q− i

r− i

) ∣∣∣∣ λ(n− i

r− i

)
.

Proof. Let H = (V, E) be an (n, q, r, λ)-design and fix some I ∈ V(i)
. We double count

S =
{
(R, e) ∈ V(r) × E : I ⊆ R ⊆ e

}
.

On the one hand, note that there are

(
n−i
r−i

)
ways to extend I to a set in V(r)

. As each

of those r-sets is covered by exactly λ hyperedges, we get

|S| = λ

(
n− i

r− i

)
.

On the other hand, for fixed I ⊆ e ∈ E, there are

(
q−i
r−i

)
many r-sets R that satisfy

I ⊆ R ⊆ e. Hence,

|S| = deg(I)

(
q− i

r− i

)
.

This concludes the proof.

From the case i = 0, we are able to deduce the number of edges in a design:

Corollary 2.5. For n ∈ N, q > r ⩾ 1 and λ ⩾ 1, an (n, q, r, λ)-design must have exactly

λ
(
n
r

)
/
(
q
r

)
edges. In particular, a Steiner triple system onn vertices has preciselyn(n−1)/6

hyperedges.

Even before the existence conjecture was posed, Kirkman showed that the conjecture

is true for Steiner triple systems:

3
Classically, one would require r ⩾ 2 for a Steiner system.
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Lemma 2.6 (Kirkman 1847, [31]). A Steiner triple system on n ∈ N vertices exists if and

only if n ≡ 1, 3 (mod 6).

We conclude with the following useful fact about Steiner triple systems:

Fact 2.7. Let H be a q-uniform hypergraph on n vertices where n ⩾ q ⩾ 3. Then, H is an

(n, q, q − 1)-Steiner system if and only if for every vertex v ∈ V(H) the link L(v) is an

(n− 1, q− 1, q− 2)-Steiner system. In particular, for q = 3, H is a Steiner triple system if

and only if for every vertex v the link L(v) is a perfect matching.

2.3 THE RESOLUTION OF THE EXISTENCE CONJECTURE

As we are interested in the existence of Steiner triple systems, which are particular

combinatorial designs, it is helpful to look back at tools developed for the existence

conjecture. Recall that by Fact 2.4, the parameters n, q, r, λ must necessarily satisfy

certain divisibility conditions for an (n, q, r, λ)-design to exist. In the other direction, it

was a longstanding problem to determine whether those divisibility conditions are also

(almost always) sufficient:

Conjecture 2.8 (Existence conjecture 1800s). Given q > r ⩾ 1 and λ ⩾ 1, there exist

n0 ∈ N such that for all n ⩾ n0 where (n, q, r, λ) satisfy the conditions in Fact 2.4 there

exists an (n, q, r, λ)-design.

Note that the existence conjecture is true for q = 3, r = 2 and λ = 1 by Lemma 2.6.

The first general improvement for Steiner systems (i.e. λ = 1 and r ⩾ 2) was done by

Rödl, showing that the approximate version of the existence conjecture (also known as

the Erdős-Hanani conjecture [14]) is true:

Theorem 2.9 (Rödl 1985, [42]). Let q > r ⩾ 1 and 1 > ε > 0.

Packing version: For all sufficiently largen, there exists a q-uniform hypergraph Swith

e(S) ⩾ (1− ε)
(
n
r

)
/
(
q
r

)
edges such that deg(f) ⩽ 1 for all f ∈ V(S)(r).

Covering version: For all sufficiently largen, there exists a q-uniform hypergraph Swith

e(S) ⩽ (1+ ε)
(
n
r

)
/
(
q
r

)
edges such that deg(f) ⩾ 1 for all f ∈ V(S)(r).

One of the key ingredients to Rödl’s proof was the following auxiliary hypergraph

that reduced the existence conjecture to a question about the existence of a matching:

Definition 2.10 (Haux). Let q > r ⩾ 1 and letH be a q-uniform hypergraph. The auxiliary

hypergraph Haux is defined by

V(Haux) =
{
f ∈ V(H)(r) : degH(f) > 0

}
, E(Haux) = {{f ∈ V(Haux) : f ⊆ e} : e ∈ E(H)} .

Note that the definition of Haux does depend on r, which we will nevertheless

notationally surpress.
4

It turns out that a Steiner system in H is equivalent to a perfect matching in Haux:

Fact 2.11. Let q > r ⩾ 1 and let H be a q-uniform hypergraph with δr(H) > 0. Then H

contains an (n, q, r)-Steiner system if and only if Haux contains a perfect matching.

4
In fact, we will mostly deal with q = 3 and r = 2.
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Proof. We show the following correspondence:

S =

(
V(H),

{⋃
f∈e ′

f : e ′ ∈ E(S ′)

})
is an (n, q, r)-Steiner system.

⇐⇒ S ′ = Saux is a perfect matching.

Note that, by construction, S ⊆ H if S ′ ⊆ Haux and vice versa.

“ =⇒ ”: Let S ⊆ H be an (n, q, r)-Steiner system, meaning that degS(f) = 1 for any

f ∈ V(H)(r). Let ef ∈ E(S) be the unique edge with f ⊆ ef. Then the unique

edge of S ′ covering f (as a vertex) in S ′ is{
f ′ ∈ V(H)(r) : f ′ ⊆ ef

}
∈ E(S ′).

Hence, S ′ is a perfect matching.

“ ⇐= ”: Let S ′ ⊆ Haux be a perfect matching in Haux, meaning that every f ∈ V(Haux) =
V(H)(r) is covered by exactly one edge e ′f. By construction, there must be some

ef ∈ E(H) such that

e ′f =
{
f ′ ∈ V(H)(r) : f ′ ⊆ ef

}
=⇒ ef =

⋃
f ′∈e ′

f

f ′.

Therefore, e ′f uniquely determines ef, meaning that ef is also unique for every

f. In particular, degS(f) = 1 for every f ∈ V(H)(r), making S an (n, q, r)-Steiner

system.

This concludes the proof.

Remark 2.12. “Packing” or “covering” versions of Fact 2.11 also hold and can be

analogously proven.

Though the transformation from H to Haux reduces the problem (for the packing

version) to a matching problem, it is not a priori clear how finding a matching in Haux

should be easier. Indeed, one can verify that, simply by construction, the edges of H and

H ′
are in correspondence to each other, meaning that Haux is generally very sparse.

However, what we lose in density we gain in stronger structural properties: Consider

the case H = K
(q)
n . Then, Haux is

(
n−r
q−r

)
-regular and every pair f1f2 has at most codegree(

n− |f1 ∪ f2|
q− |f1 ∪ f2|

)
⩽

(
n− (r+ 1)

q− (r+ 1)

)
∈ o

((
n− r

q− r

))
.

In other words, Haux is regular and has a small codegree relative to its degree.

More explicitly, each vertex sees the same amount of edges, and two vertices have few

edges covering both of them. In light of these properties, one hopes to generate the

matching by simply choosing the edges at random. However, it turns out that applying

the probabilistic method naively, i.e. where every edge is independently chosen with

some fixed probability, is not sophisticated enough to obtain Theorem 2.9. Instead,

Rödl proceeds as follows: Instead of trying to get the desired matching in one step,

we probabilistically get a small matching and remove the covered vertices at each step.
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As we don’t remove too many vertices, the properties of Haux (regularity and small

codegree) can be approximately guaranteed for the remaining hypergraph, making

iterating possible.

Both the method and this general problem setting have substantially impacted the

field. The method, now widely known as Rödl’s nibble method, has become one of the

standard tools in extremal graph theory. Because the method gained wider attention

through [41] by Pippenger and Spencer, we will also refer to the setting and similar

results as being of Pippenger-Spencer-type. Meanwhile, finding matchings in hypergraphs

with these properties has also sparked a large line of research. For one, Rödl’s result was

generalized as follows:

Theorem 2.13 (Pippenger 1980s). For every q ⩾ 2 and ε > 0 there exists γ > 0 such that

the following holds: If H is a q-uniform (1± γ)D-regular hypergraph on n vertices with

codegrees at most γD, then there is a matching in H covering all but at most εn vertices.

It is common that hypergraphs with these properties are called pseudorandom. Indeed,

one can check that the random, q-uniform hypergraph G(q)(n, p)5
has those properties

with high probability.

Pippenger’s result has been generalized in several ways. One direction (see for

example [41]) is to show that such hypergraphs can be nearly optimally decomposed

into matchings, i.e. their chromatic number is (1+ o(1))D. Another direction establishes

additional properties to the matching generated (see [2, 13]). Namely, under slightly

stronger assumptions, recent work has dealt with finding almost-perfect matchings that

are in some sense also pseudorandom, e.g. that among a large set of edges, the expected

number of edges are also contained in the matching. Having the latter property will be

crucial for the proof of Theorem 1.4, as it allows us to make certain guarantees for the

almost-perfect matching (or, going back to H, a partial design).

Though Rödl was able to prove the approximate version of the existence conjecture,

the question remained open for nearly another 30 years. In fact, no (n, q, r)-Steiner

systems were known for r > 5 until Keevash in [27] and Glock, Kühn, Osthus, and Lo in

[17] independently proved the conjecture:

Theorem 2.14 (Keevash 2014 / Glock, Kühn, Lo, Osthus 2016, [27, 17]). Conjecture 2.8 is

true.

What both proofs have in common is that they rely on the so-called absorption method,

which has also become a standard tool since its first explicit use in [43]. This method

is used whenever the sought structure involves the whole hypergraph, e.g. finding

spanning structures or say a perfect decomposition into matchings. Usually, especially

in higher uniformities, the best way to solve these problems is by involving probabilistic

or greedy arguments that may get us, say, a matching that covers all except for a small

fraction of vertices. To overcome this, we try to find an absorber, a special structure that

essentially is itself well-structured and stays that way even if it has to “absorb” some

leftover. For instance, for finding a perfect matching, the absorber could be a set of

vertices V ′
that can not only be covered by a perfect submatching, but such that the same

is true for V ′ ∪ V ′′
as long as V ′′

is sufficiently small and of suitable size.

The rough outline of the absorption method thus goes as follows:

5
Meaning the hypergraph with vertex set [n] where each edge e ∈ [n](q) has probability p of being

present, independent from the presence of other edges.
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• Find an absorber A and set it aside.

• Without touching the absorber, find a partial structureS in the rest of the hypergraph,

leaving some small leftover L.

• Use the absorption property of A to absorb L and construct with S the desired

structure.

Apart from this strategy, Keevash’s and Glock, Kühn, Osthus, and Lo’s proof differ

quite significantly. While the former additionally uses algebraic methods, the latter is

purely combinatorial in nature. However, this was only achievable because instead of

simply absorption, iterative absorption was used.

Iterative absorption, first used by Knox, Kühn, and Osthus in [32], can be thought

of as applying the absorption method with more of a “Nibble mentality”: Sometimes,

finding a suitable absorber for a “one-step” absorption and arbitrary leftover is too

difficult. In these situations, in addition to finding a partial structure to cover almost

everything, we wish to restrict the location of the possible leftover. As a result, iterating

this process, our final leftover is drastically smaller and lives in a set for which finding

and placing an absorber at the beginning becomes a managable task. However, this

requires that we know beforehand the set where our final leftover configuration will

live. Hence, we fix the vertex set sequence, V = U1 ⊇ U2 ⊇ · · · ⊇ Ul, representing the

location where our leftover lives after each iteration, at the beginning. This sequence is

called a vortex and has the property that thoseUi’s will rapidly decrease in their size and

the hypergraph restricted onto each Ui has roughly the same properties as the initial

hypergraph. After setting aside the absorber, we then need to show a cover down lemma.

This lemma should certify that, if only (almost all of) Ui remains to be covered, we can

cover Ui \Ui+1 while leaving Ui+1 mostly uncovered. Using this lemma, we are then

able to iteratively find a partial structure that covers everything except (almost all of) Ul.

But Ul is small and known at the start of the procedure. Hence, it can be dealt with by

the absorber.

2.4 THE NASH-WILLIAMS CONJECTURE

Related to both the existence conjecture and Conjecture 1.6 is the so-called Nash-
Williams conjecture. The connection is not obvious at first glance as it deals with

clique-decompositions of graphs. However, there is a natural transition from one

problem to the other: For a Steiner system Swith parameters n and q > r ⩾ 1, we can

think of the r-subsets of V(S) as elements of K
(r)
n and each edge e ∈ E(S) as a q-clique of

K
(r)
n . The following fact thus follows:

Fact 2.15. Let n ∈ N and q ⩾ r ⩾ 2. There exists an (n, q, r)-Steiner system if and only

if there exists a K
(r)
q -decomposition of K

(r)
n . Specifically, the latter means that we can

partition the edges of K
(r)
n using K

(r)
q -copies.

Hence, the existence of a Steiner triple system on n vertices is equivalent to the

existence of a K3-decomposition of Kn. Even before the existence conjecture was

posed, Kirkman already showed that the divisibility conditions are sufficient, i.e. in

“decomposition terms” that for every n ≡ 1, 3 (mod 6) the complete graph Kn can be

partitioned into triangles, see Lemma 2.6. Hence, one was interested in the structural

properties G needs to satisfy to be K3-decomposable or in general F-decomposable for

some fixed graph F.
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To keep things simple, we will focus on the K3-setting. Two necessary properties G

must have immediately come to mind: For one, as each K3 has three edges, we must

have 3 | e(G). Furthermore, as K3 is 2-regular, Gmust be even, meaning that every vertex

has even degree. We will refer to such candidate graphs as being K3-divisible:

Definition 2.16 (K3-divisible). A graph G is called K3-divisible if 3 | e(G) and G is even.

Clearly, those conditions can’t be sufficient, asC3k is for all k ⩾ 2 K3-divisible but also

K3-free. In fact, determining whether a graph is K3-decomposable is NP-hard, see [10].

Hence, in the spirit of Dirac’s theorem, the question became at what density (quantified

by the minimum degree) K3-divisibility and being K3-decomposable coincide. This

finally leads us to the famous Nash-Williams conjecture:

Conjecture 2.17 (Nash-Williams 1970, [38]). For all sufficiently large n ∈ N the following

holds: If G is K3-divisible and has minimum degree at least 3n/4, then G is K3-

decomposable.

Remark 2.18. One indicator for the hardness of the conjecture is the fact that the

extremal construction is not unique. Indeed, there are many extremal constructions

showing that this minimum degree condition would be optimal. The standard one

(as constructed for example in [4]) goes as follows: Given any k ∈ N, consider vertex-

disjoint K6k+3-copies F1, . . . , F4. Furthermore, let F5 be the complete bipartite graph

with parts V(F1) ∪ V(F2) and V(F3) ∪ V(F4). Finally, let G = F1 ∪ · · · ∪ F5. Clearly,

∆(G) = δ(G) = 3v(G)/4 − 1 = 18k + 8 as every vertex is adjacent to all vertices in two

other K6k+3-copies and all vertices of its own K6k+3-copy except itself. Furthermore, we

have

e(G) = 4

(
6k+ 3

2

)
+ (12k+ 6)2 ≡ 0 (mod 3).

Hence, G is also K3-divisible. However, every triangle of G contains at least one edge in

E(F1) ∪ · · · ∪ E(F4). Since

2 |E(F1) ∪ · · · ∪ E(F4)| = 8
(
6k+ 3

2

)
< (12k+ 6)2 = e(F5),

G cannot be K3-decomposable.

A lot of progress has been made towards solving the Nash-Williams conjecture,

especially using the iterative absorption method. Asymptotically, the problem has

been reduced to fractional K3-decompositions, i.e. where we instead seek a function

w : K3(G) −→ [0, 1] such that

∑
T∈K3(G): e⊆V(T)w(T) = 1 for every edge e ∈ E(G).

Theorem 2.19 (Barber, Glock, Kühn, Lo, Montgomery, Osthus 2020, [4]). Let δ∗ be the

infimum of δ ∈ [0, 1] satisfying the following: There exists n0 ∈ N such that every graph

G on n ⩾ n0 vertices with minimum degree δn has a fractional K3-decomposition.

Then the following holds: For every ε > 0 there exists n0 = n0(ε) ∈ N such that for

all K3-divisible graphs G on n ⩾ n0 vertices with minimum degree (max {3/4, δ∗}+ ε)n
has a K3-decomposition.

The proof utilizes the iterative absorption method and Lee follows their approach

closely for Theorem 1.4. This makes sense given that, interpreting the hyperedges of our

host graph H as triangles, we are in some sense looking for a K3-decomposition of ∂H.

This motivates the following definition:
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Definition 2.20 (K3-decomposition (Hypergraph version)). Let G be a graph and H be a

3-uniform hypergraph. We call H a K3-decomposition of G if H is a linear hypergraph and

∂H = G.

Remark 2.21. Note that H is required to be linear as every pair / edge of G should be

covered exactly once. Furthermore, if G is complete, then a K3-decomposition H of G

is a Steiner triple system. Thus, K3-decompositions naturally generalize Steiner triple

systems.

Of course, despite their similarities, Lee’s setting deviates from the setting of the

Nash-Williams conjecture in significant ways: While we gain more control with the

minimum codegree than simply the minimum degree, not every triangle in the shadow

corresponds to a hyperedge of our hypergraph. These and other obstacles and how to

overcome them will be discussed in the next chapter.



§ 3. OVERVIEW OF LEE’S RESULTS

In this chapter, we will discuss in more detail the results from [36]. First, we will prove

Lemma 1.7 which shows that the minimum codegree condition in Conjecture 1.6 would

be optimal. Next, we will give an outline of the proof of Theorem 1.4. This will be

of expository nature with a focus on the ideas involved rather than the quantitative

details. In fact, to show the essence of the ideas involved, we will restrict ourselves to the

non-transversal version, i.e. Theorem 1.3.

3.1 LOWER BOUND CONSTRUCTION

Together with Conjecture 1.6, Lee gave a corresponding lower bound construction,

showing that the conjectured minimum codegree condition would be tight up to an

additive constant. Intriguingly enough, it turns out that in the construction the codegree

is actually roughly equal to 3n/4 for every pair.

V1

V2 V3

Figure 3.1: Lee’s construction with the missing edges drawn in

Proof of Lemma 1.7. Let n ∈ N with n ≡ 1, 3 (mod 6) be given. We construct a hyper-

graph Hwith vertex set V = [n]: Partition V = V0 ·∪V1 ·∪V2 ·∪V3 such that

• n/4− 3/2 ⩽ |Vi| ⩽ n/4+ 3/2 for all i ∈ [0, 3], and

• |V0| is even and |V1| , |V2| , |V3| are odd.
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Such a partition does exist: Start with a partition V0, . . . , V3 such that the parity

conditions are met. Suppose that mini∈[0,3] |Vi| < n/4−3/2 and let i = arg mini∈[0,3] |Vi|.

By the pigeonhole principle, there must be some j ∈ [0, 3], i ̸= j, such that

∣∣Vj∣∣ ⩾ 3n
4 + 3

2

3
=
n

4
+
1

2
.

Take two elements from Vj and insert them into Vi. The new partitionW0,W1,W2,W3
satisfies the parity conditions, |Wi| ⩾ |Wi| + 2 and

∣∣Wj∣∣ ⩾ n/4 − 3/2. By iterating

this argument as long as mini∈[0,3] |Wi| < n/4 − 3/2, we finally arrive at a partition

Ṽ0, . . . , Ṽ3 satisfying the parity conditions such that mini∈[0,3] |Ṽi| ⩾ n/4 − 3/2. By

applying a similar argument, one can additionally guarantee the upper bound.

Finally, let E = E0 ·∪E1 ·∪E2 ·∪E3 and H = (V, E), where

• E0 =
{
e ∈ V(3) : |e ∩ V0| = 2

}
,

• E1 =
⋃
1⩽i<j⩽3

{
e ∈ V(3) : |e ∩ V0| = |e ∩ Vi| =

∣∣e ∩ Vj∣∣ = 1},

• E2 =
⋃
i∈[3] V

(3)
i , and

• E3 =
⋃
i,j∈[3] : i ̸=j

{
e ∈ V(3) : |e ∩ Vi| = 1 and

∣∣e ∩ Vj∣∣ = 2}.

In other words, e ∈ V(3)
is not in E if and only if

• e ⊆ V0,
• |e ∩ V0| = 1 and |e ∩ Vi| = 2 for some i ∈ [3], or

• |e ∩ V1| = |e ∩ V2| = |e ∩ V3| = 1.

We first show the bounds for δ2(H) and ∆2(H): Let u, v ∈ V be distinct vertices.

Case 1: u, v ∈ V0. By construction, e ∈ V(3) \ E covers {u, v} if and only if e ∈ V(3)
0 .

Hence,

deg(u, v) = (n− 2) − |V0 \ {u, v}| = n− |V0| ∈
[
3n

4
−
3

2
,
3n

4
+
3

2

]
.

Case 2: u ∈ V0, v ∈ Vi for some i ∈ [3]. By construction, e ∈ V(3) \ E covers {u, v} if and

only if |e ∩ Vi| = 2. Thus,

deg(u, v) = (n− 2) − |Vi \ {v}| = n− 1− |Vi| ∈
[
3n

4
−
5

2
,
3n

4
+
1

2

]
.

Case 3: u, v ∈ Vi for some i ∈ [3]. By construction, e ∈ V(3) \ E covers {u, v} if and only

if |e ∩ V0| = 1. Therefore,

deg(u, v) = (n− 2) − |V0| ∈
[
3n

4
−
7

2
,
3n

4
−
1

2

]
.

Case 4: u ∈ Vi, v ∈ Vj and 1 ⩽ i < j ⩽ 3. By construction, e ∈ V(3) \ E covers {u, v} if

and only if |e ∩ Vk| = 1 for k ∈ [3] \ {i, j}. In particular, we get

deg(u, v) = (n− 2) − |Vk| ∈
[
3n

4
−
7

2
,
3n

4
−
1

2

]
.
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Lastly, we show that H doesn’t contain a Steiner triple system: Assume that there

exists a Steiner triple system S ⊆ H. Set E ′
i = E(S) ∩ Ei for all 0 ⩽ i ⩽ 3.

1. E ′
1 covers exactly |V0| (n− 2 |V0|+ 1) pairs in

{
p ∈ V(2) : |p ∩ V0| = 1

}
. Indeed,

the pairs in V
(2)
0 can only be covered by edges in E ′

0. So, as each edge in E ′
0 covers

precisely one pair in V
(2)
0 , we have

∣∣E ′
0

∣∣ = (|V0|
2

)
.

Furthermore, every edge in E ′
0 also covers two pairs in

{
p ∈ V(2) : |p ∩ V0| = 1

}
.

Hence, out of the |V0| (|V |− |V0|) total pairs, |V0| (|V0|− 1) are covered byE ′
0, leaving

the remainder to be covered by E ′
1.

2. Of the pairs in

⋃
1⩽i<j⩽3

{
uv : u ∈ Vi, v ∈ Vj

}
, E ′
3 covers

(|V1| |V2|+ |V1| |V3|+ |V2| |V3|) −
|V0| (n− 2 |V0|+ 1)

2

of them: Each edge in E1 covers two pairs in

{
p ∈ V(2) : |p ∩ V0| = 1

}
and one pair

in

⋃
1⩽i<j⩽3

{
uv : u ∈ Vi, v ∈ Vj

}
. Thus,

∣∣E ′
1

∣∣ = |V0| (n− 2 |V0|+ 1) /2 and

(|V1| |V2|+ |V1| |V3|+ |V2| |V3|) −
∣∣E ′
1

∣∣
pairs of the latter type must be covered by E ′

3.

3. S cannot exist: Per edge in E ′
3, two pairs in

⋃
1⩽i<j⩽3

{
uv : u ∈ Vi, v ∈ Vj

}
get

covered. In particular, this means that

(|V1| |V2|+ |V1| |V3|+ |V2| |V3|) −
|V0| (n− 2 |V0|+ 1)

2

is even. However, as n is odd, |V0| even and the other partition classes odd, we get

(|V1| |V2|+ |V1| |V3|+ |V2| |V3|)−
|V0| (n− 2 |V0|+ 1)

2
≡ 1+1+1−0 ≡ 1 (mod 2). �

Thus, H doesn’t contain a Steiner triple system, which shows the claim.

Remark 3.1. Interestingly enough, the argument ultimately boils down to a parity barrier:
We get a contradiction due to some quantity being supposedly both odd and even.

This suggests that the minimum codegree threshold of finding a partial Steiner triple

system
1

or a fractional Steiner triple system (see Definition 3.4) is not just trivially at most

the minimum codegree threshold θ
STS

(see Definition 3.2)
2
, but actually smaller than

that, see Conjecture 5.1. In fact, it is possible to show that for n ⩾ 21 the construction

above always contains a fractional Steiner triple system, see Proposition A.1.

1
As in a linear subhypergraph of our host hypergraph covering all but at most o(n2) pairs of vertices.

2
Note that Steiner triple systems are in particular partial and fractional Steiner triple systems.
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3.2 OUTLINE OF LEE’S MAIN THEOREM

As all presented results are asymptotic, we will formally define the minimum codegree
threshold for Steiner triple systems as follows:

Definition 3.2 (θ
STS

). Let θ
STS

be the infimum over all δ ∈ [0, 1] for which there exists

n0 ∈ N such that for every 3-uniform hypergraph H on n ⩾ n0 vertices with δ2(H) ⩾ δn
and n ≡ 1, 3 (mod 6) contains a Steiner triple system. We will refer to θ

STS
as the

minimum codegree threshold (for Steiner triple systems).

Following [4], specifically the proof of Theorem 2.19, Lee basically reduces the

problem to its fractional relaxation:

Definition 3.3 (Perfect fractional Steiner triple systems). LetH be a 3-uniform hypergraph.

A weighted subhypergraph ψ : E(H) −→ [0, 1] is a perfect fractional Steiner triple system in
H if every pair p ∈ E(∂H) satisfies deg

ψ(p) = 1.

If the host graph H is obvious from the context, we will simply refer to ψ as a perfect

fractional Steiner triple system or just fractional Steiner triple system.
3

Analogous

to Steiner triple systems, we may also consider the minimum codegree threshold for

fractional Steiner triple systems, which leads to the definition of θf
STS

and θ∗
STS

.

Definition 3.4 (θf
STS

, θ∗
STS

, [36, Def. 1.5]). We define the function θf
STS

: [0, 1) −→ [0, 1] as

follows: Let θf
STS

(ε) be the infimum over all δ ∈ [0, 1] for which there exists n0 ∈ N such

that for every 3-uniform hypergraph H on n ⩾ n0 vertices with δ(∂H) ⩾ (1− ε)(n− 1)
and δess

2 (H) ⩾ δ(n− 2) contains a perfect fractional Steiner triple system. Furthermore,

let θ∗
STS

= limε↓0 θ
f
STS

(ε). We refer to θ∗
STS

as the fractional threshold.

Remark 3.5. While θf
STS

is obviously monotonically decreasing and thus θ∗
STS
⩾ θf

STS
(0),

it is not clear whether equality holds. We also note that, in the definition of θf
STS

, ∂H not

necessarily being complete is crucial for Lee’s proof to go through. Furthermore, while

dealing with nearly identical structures, computing θ∗
STS

should, in theory, be a much

simpler feat than computing θ
STS

directly. Indeed, on the one hand, finding a fractional

Steiner triple system inside a 3-uniform hypergraphs reduces to a linear programming

problem that is solvable in polynomial time. Meanwhile, by referring to a result by

Dor and Tarsi in [10], finding a Steiner triple system inside a 3-uniform hypergraph is

NP-complete.

The proof of Theorem 1.3 then boils down into two steps: Reducing the problem of

determining θ
STS

to θ∗
STS

and then estimating θ∗
STS

.

Theorem 3.6 (Lee 2023, [36, Simplification of Thm. 1.6]). θ
STS

= max

{
θ∗

STS
, 3/4

}
.

Theorem 3.7 (Lee 2023, [36, Thm. 1.8]). θf
STS

(ε) ⩽ (3+
√
57)/12 < 0.88 for all ε ∈ [0, 1).

As we will improve on the latter result in Chapter 4, we will only focus on giving

a proof sketch of Theorem 3.6. As with all proofs involving the iterative absorption

method, this can be again broken down into

• constructing a vortex, (Lemma 3.9)

• constructing and embedding an absorber, (Lemma 3.12 & Lemma 3.13)

• proving a corresponding cover down lemma. (Lemma 3.19)

3
Here, we deviate slightly from the naming convention established in [36].
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3.2.1 Constructing the vortex

One of the main structures needed to apply the iterative absorption method is the

so-called vortex. As discussed, the vortex is a sequence V = U1 ⊇ U2 ⊇ · · · ⊇ Ul of

vertex sets that rapidly decrease in their size such that the hypergraph induced by Ui
has roughly the same properties as our host graph. This allows us with the cover down

lemma to iteratively cover almost all of the vertices except some leftover in Ul which the

absorber then takes care of.

Essentially, the hypergraphs we deal with in Theorem 1.4 have (apart from the

divisibility conditions) one main property, a minimum codegree of at least

(max {θ∗
STS
, 3/4}+ o(1)) v(H).

Hence, we define the vortex as follows:

Definition 3.8 ((α, ε,m)-vortex, [36, Simplification of Def. 5.2]). Let α, ε ∈ R>0 and

m ∈ N0 and n ∈ N. Furthermore, let H be a 3-uniform hypergraph on n vertices. An

(α, ε,m)-vortex in H is a sequence U0 ⊇ U1 · · · ⊇ Ul such that

• U0 = V(H),

• |Ui| = ⌊ε |Ui−1|⌋ for all i ∈ [l],

• |Ul| = m,

• degH(p;Ui) ⩾ α |Ui| for all i ∈ [l] and p ∈ U(2)
i−1.

In other words, the size of the vertex sets shrinks by a factor of ε each time, and

every pair in Ui−1 should have the right codegree with respect to Ui. Since Ui−1 ⊇ Ui,
this in particular implies that the minimum codegree of H[Ui] is, as desired, at least an

α-fraction of |Ui|.

In a fairly standard manner, by choosing Ui randomly from Ui−1 and applying

Theorem B.2, Lee proves the following lemma:

Lemma 3.9 (Lee 2023, [36, Simplification of Lem. 5.3]). Letm ′, n ∈ N be integers such

that

0 < 1/n≪ 1/m ′ ≪ α, ε < 1.

Moreover, let H be a 3-uniform hypergraph on n vertices with δ2(H) ⩾ (α+ ε)n. Then

H has an (α, ε,m)-vortex for some εm ′ < m ⩽ m ′
.

3.2.2 Constructing (exclusive) absorbers

In this subsection, we will discuss the construction of the absorber. To briefly summarize,

after iteratively applying the cover down lemma / Lemma 3.19, all the uncovered pairs

are contained in the last subset of the vortexUl, where |Ul| is of fixed size (in comparison

to the order n of our hypergraph). Because of the initial parity conditions on n, n ≡ 1, 3
(mod 6), the uncovered pairs induce a K3-divisible graph.

Indeed, if n ≡ 1, 3 (mod 6), then we have that the total number of pairs is divisible

by 3 since(
n

2

)
=
n− 1

2
· n ≡

{
0 · n, n ≡ 1 (mod 6)
n−1
2 · 0, n ≡ 3 (mod 6)

}
≡ 0 (mod 3).
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Furthermore, as the uncovered pairs initially induce a Kn, which is even since n is odd,

and each added hyperedge covers exactly 3 pairs, the number of uncovered pairs in the

end is also a multiple of 3 and together they induce an even graph.

To cover those remaining pairs encoded in this graph, we consider all possibilities G,

V(G) = Ul, of this resulting graph and embed an exclusive absorber beforehand for each

of these possibilities. As n is chosen sufficiently large after the size
4

of |Ul| is already

fixed, meaning that there are only O(exp(|Ul|
2)) many possibilities for G, it is possible to

embed all those exclusive absorbers “vertex-disjointly” in our hypergraph, thus giving

us our desired absorber. Of course, generally, two exclusive absorbers A,A ′
can’t be

exactly vertex-disjoint, especially if, say, they serve as absorbers of possible leftovers G

and G ′
respectively, where G ̸= G ′

but V(G) ∩ V(G ′) ̸= ∅. Instead what we precisely

mean is that (V(A) \ V(G)) ∩ (V(A ′) \ V(G ′)) = ∅.

To guarantee that the vertices of A and A ′
, which are not part of the leftover, are in

the “outermost layer” of our vortex, U0 \ U1, we also require V(A) \ V(G) ⊆ U0 \ U1
and V(A ′) \ V(G ′) ⊆ U0 \U1. Having this kind of control concerning how the exclusive

absorbers are embedded will be necessary to formulate the cover down lemma.

For the absorber, and thus our exclusive absorbers A for G, to truly be effective and

also embeddable in our host hypergraph, we need to satisfy the following conditions:

• A should be sufficiently sparse to guarantee embeddability. This will be formalized

with the notion of G-rooted edge-degeneracy.

• A should be K3-disjoint from G, meaning E(A) ∩ K3(G) = ∅.
5

This property

guarantees us that we do not need to rely on the hyperedges induced by Ul,

simplifying our embedding scheme.

• T should be an induced subgraph of the shadow of A, i.e. ∂A[V(G)] ≃ G. In short,

this avoids making potential mistakes by covering a pair in Ul twice.

• A should contain K3-decompositions for ∂A and ∂A \ G respectively. In other

words, A should contain a hypergraph which only covers pairs in ∂A \G exactly

once in the case that G is not the “graph of leftover pairs”, and another one which

covers all pairs in ∂A exactly once if G is the leftover.

In short, ignoring sparsity, we define an absorber as follows:

Definition 3.10 (K3-absorber, [36, Def. 4.4]). Let G be a graph. We say a 3-uniform

hypergraph A is a K3-absorber for G if A and G are K3-disjoint, G is induced in ∂A and

both ∂A and ∂A \G have a K3-decomposition in A.

To formalize sparsity, we will use the following notion:

Definition 3.11 (G-rooted edge-degeneracy, [36, Def. 4.5]). Let H be a 3-uniform hyper-

graph and let G be an induced subgraph of ∂H. The G-rooted edge-degeneracy of H is the

smallest d ∈ N0 such that there is an ordering v1, v2, . . . of V(H) \ V(G) such that for all

i = 1, 2, . . . the following holds:∣∣{{u,w} ⊆ (V(G) ∪ {
vj : 1 ⩽ j < i

})
: uviw ∈ E(H)

}∣∣ ⩽ d.
Essentially, this naturally generalizes the notion of edge-degeneracy for graphs.

Informally, H has G-rooted edge-degeneracy d if, following that order, each new vertex

induces at most d hyperedges with the previous vertices, including the vertices in G.

4
More precisely, an upper bound on that size.

5
Here, we identify hyperedges with their spanned triangle.
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To give a taste in what way this notion of degeneracy can be used for embedability,

we show in larger generality the following:

Lemma 3.12 (Embeddability of hypergraphs with G-rooted edge-degeneracy d). Let H

be a 3-uniform hypergraph and G be a graph with V(G) ⊆ V(H). Furthermore, let A be

a 3-uniform hypergraph with G-rooted edge-degeneracy at most d. If

δ2(H) ⩾

(
1−

1

d

)
· v(H) + v(A)

d

for all p ∈ V(H)(2), then A is embeddable into H such that the embedding τ : V(A) −→
V(H) satisfies τ(v) = v for all v ∈ V(G).

Proof. W.l.o.g. we may assume that V(H) ∩ V(A) = V(G). Now, to construct the

embedding τ, let v1, v2, . . . be the ordering of V(A) \ V(G) witnessing that A has

G-rooted edge-degeneracy at most d. Since τ(v) = v for all v ∈ V(G), we focus on

embedding the vertices in V(A) \ V(G).
For that, we proceed inductively, extending a partial embedding of A[V(G) ∪

{v1, . . . , vi−1}] to an embedding of A[V(G) ∪ {v1, . . . , vi}] for all 1 ⩽ i ⩽ |V(A) \ V(G)|:
Let τ : V(G) ∪ {v1, . . . , vi−1} −→ V(H) be the partial embedding. Furthermore, let

p1, . . . , pd ′ ∈ (V(G) ∪ {v1, . . . , vi−1})
(2)

, 0 ⩽ d ′ ⩽ d, be the pairs of vertices that induce

edges in H with vi. W.l.o.g. we may assume that d ′ = d. Consider the common

neighbors of the corresponding pairs, i.e.

N = NH(τ(p1)) ∩ · · · ∩NH(τ(pd)).

To show that we can extend our embedding, it suffices to show that |N| ⩾ v(A) as

N \ (τ(V(G) ∪ {v1, . . . , vi−1})) would consequently be non-empty. Finally, observe that

|NH(τ(p1)) ∩NH(τ(p2))| = |NH(τ(p1))|+ |NH(τ(p2))|− |NH(τ(p1)) ∪NH(τ(p2))|
⩾ |NH(τ(p1))|+ |NH(τ(p2))|− |v(H)|

⩾

(
1−

2

d

)
· v(H) + 2v(A)

d

.

.

.

|N| = |NH(τ(p1)) ∩ · · · ∩NH(τ(pd−1))|+ |NH(τ(pd))|

− |(NH(τ(p1)) ∩ · · · ∩NH(τ(pd−1))) ∪NH(τ(pd))|

⩾

(
1−

d− 1

d

)
· |V(H)|+ (d− 1) |V(A)|

d

+

(
1−

1

d

)
· |V(H)|+

|V(A)|

d
− |V(H)|

⩾ |V(A)| ,

concluding the proof.

Following the absorber construction in [4], Lee achieves the following:

Lemma 3.13 (Lee 2023, [36, Lem. 4.6]). For every K3-divisible graph G, there exists a

K3-absorber A for Gwhose G-rooted edge-degeneracy is at most 4.
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By Lemma 3.12, we get that the K3-absorber can be embedded in a hypergraph as

given in Theorem 1.3.

The basic idea behind Lemma 3.13 is to “transform a given leftover [. . . ] into a new

leftover” ([4]). Unsurprisingly, the structures enabling us to do so are called transformers.
As absorbers basically transform the given leftover to an empty leftover, the definition

for a transformer naturally goes as follows:

Definition 3.14 ((S, S ′)-absorber, [36, Def. 4.7]). Let S and S ′ be two vertex-disjoint K3-

divisible graphs. A 3-uniform hypergraph T is a transformer of (S, S ′) or (S, S ′)-transformer
if

• T and S ∪ S ′ are K3-disjoint,

• ∂T contains S ∪ S ′ as an induced subgraph, and

• both ∂T \ S and ∂T \ S ′ have a K3-decomposition in T .

What is very convenient about transformers is that we can “stack” them.

Figure 3.2: Stacking two (K3, K3)-transformers yields a larger a (K3, K3)-transformer

Fact 3.15. Let S, S ′, and S ′′ be three vertex-disjoint K3-divisible graphs such that

there exists an (S, S ′)-transformer and an (S ′, S ′′)-transformer. Then there exists an

(S, S ′′)-transformer.

Indeed, let T be the (S, S ′)-transformer and T ′
the (S ′, S ′′)-transformer. W.l.o.g. we

may assume that

• T and S ′′ are vertex-disjoint,

• T ′
and S are vertex-disjoint, and

• V(T) ∩ V(T ′) = V(S ′).

Then, taking the union T ∪ T ′
yields an (S, S ′′)-transformer, see Figure 3.2.

Hence, we wish to transform our given leftover step by step into a leftover for which

finding an absorber becomes obvious. That “final” leftover in Lemma 3.13 will be the

disjoint union ofm = e(G)/3 K3’s, denoted bymK3, which obviously can be absorbed

by a hypergraph matching of size e(G)/3. The proof of Lemma 3.13 breaks down into

the following steps:

Lemma 3.16. Let F∗ denote the 1-subdivision of a graph F. For every K3-divisible

graph G there exists a hypergraph T with G-rooted edge-degeneracy 1 that, ignoring

V(G) ∩ V(G∗) ̸= ∅, acts6
like a (G,G∗∗)-transformer.

6
In the sense that it has all the properties of a transformer.
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Figure 3.3: T = T ′∪ T ′′
in Lemma 3.16 forG = C6 with ∂T ′ = ∂T \G∗∗

and ∂T ′′ = ∂T \G

Proof. Convert G to a 3-uniform hypergraph T ′
by adding to each edge of G its own

private vertex. Clearly, ∂T ′ = G ∪G∗
. Now, apply the same procedure to G∗

and obtain

the 3-uniform hypergraph T ′′
. Clearly, ∂T ′′ = G∗ ∪G∗∗

.

Now, let T = T ′ ∪ T ′′
. One can check that T acts like a (G,G∗∗)-transformer, where T ′

and T ′′
are the K3-decompositions for ∂T \G∗∗

and ∂T \G respectively. Furthermore,

the ordering where we first place the vertices in V(T ′) \ V(G) and then the vertices

V(T ′′) \ V(G ′) witnesses that T has G-rooted edge-degeneracy at most 1.

⇝

Figure 3.4: C∗∗
6 ⇝ S6

Though not obvious at first, this turns out to be a huge simplification. Namely, by

identifying all the vertices of V(G) in G∗∗
, the resulting graph is a union of e(G) C4’s

which intersect in precisely one vertex. We will denote this graph as Se(G). Note that

if there exists a (G∗∗, Se(G))-transformer of small G∗∗
-rooted edge-degeneracy, then

we are done: We could then transform G into G∗∗
and G∗∗

into Se(G). Additionally,

since an (S, S ′)-transformer is also an (S ′, S)-transformer, we could transform Se(G) into

(mK3)
∗∗

and (mK3)
∗∗

intomK3 wherem = e(G)/3. The latter can then be absorbed by

a hypergraph matching.
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To construct a (G∗∗, Se(G))-transformer, Lee proves in greater generality that if there

exists an edge-bĳective graph homomorphism between vertex-disjoint, K3-divisible graphs

S, S ′, then an (S, S ′)-transformer with (S ∪ S ′)-rooted edge-degeneracy at most 4 exists.

Conceptually, the existence of such a homomorphism means that we can construct S ′

starting from S by iteratively identifying non-adjacent vertices that don’t share neighbors.

Lemma 3.17 ([36, Lem. 4.8]). Let (S, S ′) be a pair of vertex-disjoint K3-divisible graphs

for which there exists an edge-bĳective homomorphism φ : V(S) −→ V(S ′). Then there

exists an (S, S ′)-transformer T which has the (S ∪ S ′)-rooted edge-degeneracy at most 4.

The crucial property used to prove this lemma is the following fact:

Fact 3.18. Every even graph can be decomposed into edge-disjoint cycles.

Figure 3.5: A (C∗∗
6 , S6)-transformer with C∗∗

6 ∪ S6-rooted edge-degeneracy at most 4

Hence, it suffices to show the lemma for cycles for which an explicit construction is

given, see Figure 3.5 for example.

As every transformer (or transformer acting structure) constructed has rooted edge-

degeneracy at most 4, it is not hard to show that the resulting K3-absorber for the leftover

G has G-rooted edge-degeneracy at most 4, concluding the proof of Lemma 3.13.

3.2.3 Cover down lemma

To finish up Theorem 1.3, we need to show a cover down lemma. Let H denote the

given hypergraph as in Theorem 1.3. Given the vortex V(H) = U0 ⊇ U1 ⊇ · · · ⊇ Ul, the

cover down lemma should not only allow us to cover all pairs incident to some vertex in

U0 \U1 using a partial Steiner triple system, but we wish to do so in a way that preserves

the structure well enough to be able to iterate, i.e., the first cover down step was suitable

enough that we can apply the cover down lemma again to cover all remaining pairs

incident to a vertex in U1 \U2 and so on.



3.2 OUTLINE OF LEE’S MAIN THEOREM 24

For that, we recall under what conditions the cover down lemma is first applied:

After the construction of the vortex, the next step of iterative absorption is embedding

the absorber A, which is really just a suitable union of exclusive absorbers. To “set

aside” A, let H ′ = H \ E(A). As we embed the vertices of the absorber that are not

in Ul into U0 \ U1, certain pairs are already gonna be covered, regardless of which

K3-decomposition per exclusive absorber we take to complete the Steiner triple system.

These pairs are precisely the ones in ∂A \U
(2)
l . Hence, to avoid overlap, we delete all

the edges containing such pairs from H ′
. The resulting hypergraph H ′′

therefore now

has minimum codegree zero with the graph G = ∂H ′′
induced by the uncovered pairs

not forming a complete graph. To compensate, we use the essential minimum codegree

which is still at least

(
max

{
θ∗

STS
, 3/4

}
+ o(1)

)
|U0|. Additionally, every pair p ∈ E(G)

satisfies

degH ′′(p;U1) = (max {θ∗
STS
, 3/4}+ o(1)) |U1|

by the properties of our vortex. Furthermore, as n ≫ |Ul|, we only “lost” few pairs,

which in turn means that the graphG still has a high minimum degree of (1−o(1))n and

is complete on U1. Due to the structure of the vortex, every vertex also has (1− o(1)) of

all vertices in U1 as neighbors. Note that this is exactly the type of setting under which

θf
STS

guarantees a perfect fractional Steiner triple system.

Hence, as

lim

ε↓0
(max {θ∗

STS
, 3/4}+ ε) = max {θ∗

STS
, 3/4} = lim

ε↓0

(
max

{
θf

STS
(3ε), 3/4

}
+ 10ε

)
,

it suffices by continuity to prove the following:

Lemma 3.19 (Cover down lemma, [36, Simplification of Lem. 5.4]). Let 0 < 1/n≪ ε < 1

and let H be a 3-uniform hypergraph with vertex set V where |V | = nwith

δess

2 (H) ⩾
(
max

{
θf

STS
(3ε), 3/4

}
+ 10ε

)
n.

Furthermore, let U ′ ⊆ U ⊆ V be subsets such that |U ′| = ⌊ε |U|⌋ and |U| = ⌊ε |V |⌋.
Additionally, let the shadow G = ∂H be K3-divisible and satisfy the following:

• δ(G) ⩾ (1− ε)n;

• degG(v;U) ⩾ (1− 2ε) |U| for all v ∈ V ;

• G[U] is complete.

Lastly, we assume that for every p ∈ E(G)

degH(p;U) ⩾
(
max

{
θf

STS
(3ε), 3/4

}
+ 9ε

)
|U| .

Then there exists a 3-uniform, linear hypergraph T ⊆ H on V that satisfies the following:

• δ((G \ ∂T)[U]) ⩾ (1− ε) |U|,

• deg(G\∂T)[U](u;U ′) ⩾ (1− 2ε) |U ′| for all u ∈ U,

• (G \G[U]) ⊆ ∂T ⊆ (G \G[U ′]).

In particular, G \ ∂T is complete on U ′
.

Remark 3.20. Metaphorically, we may think of the vertices in V as being in different layers:

• We say that a vertex is in the outer layer (short: outer vertex) if it is in V \U.
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• We say that a vertex is in the middle layer (short: middle vertex) if it is in U \U ′
.

• We say that a vertex is in the inner layer (short: inner vertex) if it is in U ′
.

Using our new terminology, the goal is that all pairs involving outer vertices are

covered without covering any pairs between inner vertices.

As common with absorption, we need a reservoir. The goal of the reservoir, which is

just a family of carefully chosen sets of vertices, is similar to that of the (global) absorber:

Cover all the leftover pairs. Since we are the most flexible with the middle vertices, we

will place the reservoir in the middle layer. For concreteness, let us enumerate the vertices

V = {v1, . . . , vn} such that {v1, . . . , vn ′} = V \ U for some N ∋ n ′ ⩽ n. To handle the

leftover pairs incident to vi for each outer vertex vi, we want to choose someAi ⊆ U \U ′

for our reservoir.

U ′

U

V
vi vj

Ai

Aj

w ∈ N(vi, vj) ∩Ai ∩Aj

Mi

Mj

Ui

Uj

Figure 3.6: Sketch of how the reservoir is used to deal with the leftover

Before going into more detail, let us informally first review the basic steps:

• After finding and setting aside the reservoir, we establish using the definition of

θf
STS

that there is a highly pseudorandom fractional Steiner triple system ψ in H,

meaning that no edge in H gets a high value by that fractional Steiner triple system.

• By representing the weights of ψ by multi-edges, we obtain a 3-uniform, multi-

hypergraph Ĥ, whose simplification7
is a subhypergraph of H. By the properties of

ψ, Ĥ roughly covers each pair of vertices by the same number of edges and per

triple V(H)(3), there are only few multi-edges representing that triple.

• This means that Ĥaux is a pseudorandom hypergraph, where we can apply

Pippenger-Spencer-type results to get a large matchingM in Ĥaux.

• In fact, we can guarantee that this matching will be pseudorandom in the sense

that among a large set of vertices, the expected number of vertices are contained

inM. We apply this to {p ∈ V(Ĥaux) : v ∈ p} for all outer vertices v ∈ V \U, which

in particular gives us that almost all except for o(n) many pairs incident to v are

covered.

• Now, we use the reservoir: For every uncovered pair vivj between two outer

vertices, we greedily select a vertex in N(vi, vj) ∩Ai ∩Aj.
7
I.e. the hypergraph obtained by removing all the multi-edges.
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• After that, only a few pairs between outer vertices and non-outer vertices remain

to be covered. For that, consider for each outer vertex vi the set of vertices u ∈ U
such that uvi is still not covered. Denote this set by Ui. Inspired by Fact 2.7, we

consider the auxiliary graph Fi with vertex set Ui and

E(Fi) =
{
uw ∈ U(2)

i \U ′(2) : uviw ∈ E(H)
}
.

Note that uw as above is always uncovered since G[U] is complete and all pairs

covered until that point are incident to an outer vertex.

Since the pairs we covered until now form aK3-divisible graph andG isK3-divisible

by assumption, it will be the case that |Ui| is even. Hence, it remains to show

that Fi has for every outer vertex vi a perfect matchingMi. This can be achieved

by using the resevoir, which in particular will guarantee for every outer vertex

vi and for every u ∈ Ui that a good fraction of vertices w ∈ Ai forms an edge

uviw ∈ E(H). This corresponds to a high minimum degree in Fi such that Dirac’s

theorem for matchings applies. However, we require that E(Mi) ∩ E(Mj) = ∅ for

all outer vertices vi ̸= vj to avoid overlaps. To overcome this issue, we use that the

Ai’s don’t overlap too much so that disjointness can be guaranteed by a slightly

more complicated generalisation of Dirac’s theorem.

We will now proceed with a more detailed rundown of the argument. First, we show

that a reservoir with desired properties exists:

Proposition 3.21 ([36, Simplification of Clm. 1 in proof of Lem. 5.4]). Let H, n, ε,

and U ′ ⊆ U ⊆ V be given as in Lemma 3.19. Let µ = ε10. There exists subsets

A1, . . . , An ′ ∈ U \U ′
such that for all 1 ⩽ i < j ⩽ n ′

the following holds:

(a) Ai ⊆ NG(vi),

(b) |Ai| ⩾
µ|U|
2 ,

(c)

∣∣Ai ∩Aj∣∣ ⩽ 2µ2 |U|,
(d) |NH(u, vi) ∩Ai| ⩾ 2|Ai|

3 for all u ∈ U,

(e)

∣∣NH(vi, vj) ∩Ai ∩Aj∣∣ ⩾ µ2|U|
8 if vivj ∈ E(G), and

(f) each u ∈ U is contained in Ai for at most 2µn numbers i ∈ [n ′].

Remark 3.22. Condition (a) is necessary to ensure that we don’t cover a pair twice.

Condition (e) will be used to cover leftover pairs between two outer vertices. Conditions

(b), (c), (d) and (f) are used to get that family of edge-disjoint perfect matchings at the

end, see Lemma 3.28. Concerning the proof of this proposition, it is a straightforward

application of probabilistic methods, e.g. Theorem B.1. Lastly, in the original statement,

there is one additional condition (g) that becomes relevant in the transversal version.

Recall that we are primarily interest in covering pairs in E(G) incident to the outer

vertices. The graph formed by these pairs is precisely G \ G[U]. To “set aside” the

reservoir as well, we want to only consider pairs in

G ′ = G \ (R ∪G[U]) ,

where R = {avi : i ∈ [n ′], a ∈ Ai}. In H, this means that we first consider the subhy-

pergraph H ′ ⊆ H where we keep precisely the edges corresponding to triangles in

G ′
.
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We wish to now construct the linear hypergraph covering for each outer vertex v

almost all of its incident pairs: H ′
still satisfies the conditions of θf

STS
, meaning that it

contains a fractional Steiner triple system. However, as indicated, we can guarantee

more. Namely, we can exploit that the set of fractional Steiner triple systems are closed

under convex combinations. Using this observation, Lee proves the following:

Lemma 3.23 (Lee 2023, [36, Lem. 4.1]). For every real number ε > 0, there is n0 = n0(ε)
such that the following holds for all n ⩾ n0: LetH be an n-vertex, 3-uniform hypergraph

with

δess

2 (H) ⩾
(
θf

STS
(ε) + ε

)
n

and δ(∂H) ⩾ (1− ε)n. Then there is a fractional Steiner triple system ψ of H such that

∥ψ∥∞ ⩽ log
2(n)/n.

In other words, what this lemma implies is that there is a fractional Steiner triple

system where the contribution of each edge is not too large.

Remark 3.24 (Comparison to Theorem 2.19). Recall that Lee’s proof of Theorem 1.3

follows closely the proof of Theorem 2.19 concerning Conjecture 2.17. However, this

step of the cover down lemma is where Lee deviates the most from that proof: Due to a

theorem by Haxell and Rödl in [19], it directly follows that if a graph is dense enough

(quantified using the minimum degree) to have a fractional K3-decomposition (in the

graph-sense), then that same density suffices to guarantee a partial K3-decomposition,

i.e. a K3-packing that misses o(n2) edges. However, no such analogue theorem is known

for the setting of Theorem 1.3. As such, Lee’s approach to prove the lemma above is

novel and may be of independent interest in the future.

Applying Lemma 3.23 to H ′
, we obtain this fractional Steiner triple system ψ. In

H ′
aux

ψ corresponds to a perfect fractional matching, i.e. where the weight each vertex

gets is exactly one. Additionally, as the maximum weight assigned to an edge by ψ is

at most log
2(n)/n, the weighted codegree of this fractional perfect matching is at most

log
2(n)/n, making it a pseudorandom weighted subhypergraph.

As a next step, we wish to obtain a pseudorandom multi-hypergraph F that is,

ignoring the multiplicities of the edges, a subhypergraph of H ′
aux

. If we get to this

situation, we can apply Pippenger-Spencer-type results to obtain the large matching.

Going back to H ′
, this then corresponds to a linear hypergraph that covers almost all

pairs in G ′
.

To reach our goal, we need to somehow get away from the fractional weights. In

some sense, we wish to represent the weight of an edge by the multiplicity it gets in

F. Hence, scaling up ψ by some appropriate factor in poly(n), we apply the following

lemma:

Lemma 3.25 ([36, Lem. 5.5]). Let k ∈ N and D,d, τ, δ ∈ R⩾0. Let H be a k-uniform

hypergraph that contains a (d, τ, δ)-pseudorandom weighted subhypergraph ψ : E(H) −→
R⩾0, i.e. deg

ψ(v) = (1± τ)d for all v ∈ V(H) and ∆
ψ
2 (H) ⩽ δd. Furthermore, assume

that ∆(H) ⩽ τD. Then there exists a multi-hypergraph F such that the simplification of F

Fsimp is a subhypergraph of H and F is an (D, 2τ, δ)-pseudorandom multi-hypergraph,

i.e. where degF(v) = (1± τ)D for all v ∈ V(H) and ∆2(F) ⩽ δD.

Remark 3.26. We note that the definition of degree and codegree are naturally extended

to multi-hypergraphs by accounting for the multiplicities of the edges. Furthermore, the
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proof of this lemma basically goes by replacing each edge e ∈ E(H) by multiple edges

with multiplicity ⌊Dψ(e)/d⌋.

Given F, we want to now construct a matching that leaves few incident pairs uncovered

per outer vertex. More formally, we want for every outer vertex vi that all but at most o(n)
many pairs in Evi = {viw : w ∈ NG ′(vi)} ⊆ V(H ′

aux
) get covered. This can be achieved

using the following lemma:

Lemma 3.27 ([26, Simplification of Thm. 7.1]). Let k > 3 be an integer,D, τ, δ, µ, ε, γ, K ∈
R>0 and 0 < ε < (k − 2)/(k − 1). Then there exists n0 = n0(k, K, γ, µ, ε) such that the

following holds for everyn ⩾ n0: LetHbe ak-uniform,n-vertex, (D, τ, δ)-pseudorandom

multi-hypergraph. Assume D ⩾ exp (log
µ(n)), δ ⩽ D−γ

, and τ ⩽ Kδ1−ε. Let F ⊆
P (V(H)) be a collection of vertex subsets of V(H) such that |F| ⩾ δ−1/2 log(n) for all

F ∈ F and |F| ⩽ exp(log
4/3 n). Then H has a (F, δ1/(k−1))-pseudorandom matching M:

|F \ V(M)| ⩽ δ1/(k−1) |F| for every F ∈ F.

Note that, while the uniformity k needs to be greater than 3 here, since Lee’s proof

(of Theorem 1.4) also involves colors and thus works with 4-uniform multi-hypergraphs,

we can still apply Lemma 3.27. Hence, by taking Ev1 , . . . , Evn ′ ∈ F, appropriate choices

for the constants, and some (higher uniformity version of) F, we get a matching M in

H ′
aux

such that Evi \ V(M) ⩽ (εn)3/4 ∈ o(n).
Transferred back to H ′

, M corresponds to a linear hypergraph T1 such that the

degree of every outer vertex in G ′′ = G ′ \ ∂T1 is at most (εn)3/4 ≪ ε20 |U| /8. At this

point, we first deal with the uncovered pairs between two outer vertices by using the

reservoir: For every uncovered pair of vertices vivj ∈ E(G ′′[V \U]), we greedily choose

w ∈ NH(vi, vj) ∩Ai ∩Aj. This is possible due to property (e) in Proposition 3.21 and

(εn)3/4 ≪ ε20 |U| /8.

Let T2 be the corresponding linear hypergraph induced by those edges. The uncovered

pairs which we still wish to cover are precisely the ones in R ′ = (R∪G ′′) \ ∂T2. For outer

vertices vi, let A ′
i = NR ′(vi). Due to the properties of T1 and the construction of T2, we

have that

|Ai|− (εn)3/4 ⩽
∣∣A ′
i

∣∣ ⩽ |Ai|+ (εn)3/4. (⋆)

Furthermore, note that

∣∣A ′
i

∣∣
is even: Indeed, we have by assumption that G is K3-

divisible. In particular, degG(vi) is even. As both ∂T1 and ∂T2 are K3-divisible as well

and edge-disjoint, we thus get that

degG\∂(T1∪T2)(vi) = degR ′(vi) =
∣∣A ′
i

∣∣
is even. Hence, define for every i ∈ [n ′] the auxiliary graph

Fi =
{
uw ∈ A ′(2)

i \U ′(2) : uviw ∈ E(H)
}
= (G \G[U ′])[A ′

i].

It suffices to show that there are edge-disjoint perfect matchingsMi ⊆ Fi. Indeed, by

adding vi to the edges ofMi, we get that

T3 =
(
V(H),

{
uviw : uw ∈Mi, i ∈ [n ′]

})
⊆ H

is a linear hypergraph with R ′ ⊆ ∂T3. By construction, it is clear that T1, T2, and T3 are

edge-disjoint, linear hypergraphs such that G \G[U] ⊆ ∂T where T = T1 ∪ T2 ∪ T3 ⊆ H.
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It is also clear by construction that ∂(T1 ∪ T2) ⊆ G \ G[U]. Additionally, due to the

definition of Fi for all i ∈ [n ′], we have that ∂T3 ⊆ G \G[U ′]. Hence, in total we have that

G \G[U] ⊆ ∂T ⊆ G \G[U ′].

Furthermore, due to (f) of Proposition 3.21, we have due to |U| = ⌊εn⌋

∆(∂(T2 ∪ T3)[U]) ⩽ ∆(G ′′) + 2ε10n ⩽ |U|
3
4 + 3ε9 |U| ⩽

ε

2

∣∣U ′∣∣ .
Since G[U] is complete, we also get

δ((G \ ∂T)[U]) = |U|− 1− ∆(∂(T2 ∪ T3)[U])
⩾ (1− ε) |U| ,

deg(G\∂T)[U](u;U ′) ⩾
∣∣U ′∣∣− 1− ∆(∂(T2 ∪ T3)[U])

⩾ (1− 2ε)
∣∣U ′∣∣

for all u ∈ U, showing that we would indeed be done.

To show that those edge-disjoint, perfect matchings Mi ⊆ Fi exist, we apply the

following lemma, which can be seen as a generalization of Dirac’s theorem for perfect

matchings:

Lemma 3.28 ([36, Simplification of Lem. 5.7]). Let µ > 0 and letN ∈ N. Then there exists

n0 = n0(µ) such that the following holds for all n ⩾ n0. Let G = (V, E) be an n-vertex

graph and assume that A1, . . . , AN ⊆ V satisfy the following:

• |Ai| is even and δ(G[Ai]) ⩾
(
1
2 + 4µ

1
6

)
|Ai| for all i ∈ [N];

• |Ai| ⩾ µ
4
3n for all i ∈ [N];

•

∣∣Ai ∩Aj∣∣ ⩽ µ2n for all 1 ⩽ i < j ⩽ N;

• every v ∈ V is contained in at most µn of the sets Ai.

Then for every i ∈ [N], the graph G[Ai] contains a perfect matching Mi such that

E(Mi) ∩ E(Mj) = ∅ for every 1 ⩽ i < j ⩽ N.

Remark 3.29. For a proof of this lemma, we refer to [4, Lem. 3.10].

It can be shown that we can apply the lemma withG\G[U ′], n ′
,A ′
1, . . . , A

′
n ′ ⊆ V(G),

and 2ε9 as the parameters G, N, A1, . . . , AN, and µ respectively: Together with (⋆) and

all A ′
i having even size, the first condition follows from (d) and the second condition

from (b) in Proposition 3.21; the third condition follows from (c) in Proposition 3.21; the

fourth condition follows from (f) in Proposition 3.21 and the fact that ∆(G ′′) ⩽ (εn)3/4.
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In previous chapters, we focused our attention on Steiner triple systems and the

minimum codegree threshold θ
STS

which guarantees their existence in our host graph

H. In particular, we have shown that determining the threshold θ
STS

can basically be

reduced to the fractional threshold θ∗
STS

. In this chapter, we will quantitatively improve

Lee’s result by analyzing more closely this parameter θ∗
STS

.

Recall that the significance of θ∗
STS

lies in the fact that – if provably below 3/4 –

Theorem 3.6 would immediately give us the asymptotically optimal minimum codegree

threshold for Steiner triple systems θ
STS

= 3/4. As such, its importance is evident.

The main result of this chapter is the following.

Theorem 4.1. Let x∗ be the unique root of the polynomial p(x) = 8x3− 22x2+ 10x− 1 in

[0, 1/6]. Then, θf
STS

(ε) ⩽ 1− x∗ < 0.8579 for any ε ∈ [0, 1). In particular, θ∗
STS
⩽ 1− x∗ <

0.8579.

Together with the transversal version of Theorem 3.6 (see [36, Thm. 1.6]), we

immediately obtain Theorem 1.8. To achieve this result, we closely follow Delcourt and

Postle’s approach in [6]. There, they established the best known upper bound on the

minimum degree threshold for a fractional K3-decomposition of a graph.

4.1 COMPARISON OF PREVIOUS APPROACHES

Recall that the estimation of this threshold is of equal importance to the Nash-Williams

conjecture as determining θ∗
STS

is to Conjecture 1.6, see Theorem 2.19. As such, estab-

lishing upper bounds on that threshold has been the focus of many papers. Indeed,

to establish the upper bound for θ∗
STS

given in Theorem 3.7, Lee closely follows Dross’

approach in [11]. From 2015 to 2020, this approach would lead to the best upper bound

for the minimum degree threshold for a graph to have a fractional K3-decomposition.

Dross’ result was independently improved by Dukes and Horsley in [12] and Delcourt

and Postle in [6], the latter holding the best upper bound (of roughly 0.827327 < 5/6) to

this date.

Dross’ approach (for fractional K3-decompositions of a graph G) can be summed up

as follows:

• Start with a uniform weighting on the triangles.

• The goal is to shift the weights in such a way that the total weight is preserved after

each operation
1
, the weighting stays non-negative, and the demand for each pair is

met.

1
Note that this invariance implies the value of the initial uniform weighting.
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• For that, consider (scaled versions of) gadgets ψ : K3(G) → R which are supported

on a K4 and only shift the weights between the edges of a perfect matching.

• Introduce an auxiliary network where a flow of maximum value implies the

existence of a sequence of (scaled) gadgets that modify our uniform weighting to a

fractional K3-decomposition.

• Use the max-flow min-cut theorem
2

to show that such an optimal exists if δ(G) ⩾
9n/10.

Conceptually, Dukes and Horsley do a more careful analysis of Dross’ approach.

Meanwhile, Delcourt and Postle’s approach is already different on a conceptual level

which may be the reason for its strength.

For one, Delcourt and Postle exploit the (conjectured) minimum degree threshold to

its absolute maximum. Namely, given a minimum degree greater than 3n/4, it is easy to

see that every edge is contained in at least one K5. So, instead of using K4 as the support

for modification, they use K5’s which in turn leads to less drastic changes in the weights.

Additionally, Delcourt and Postle’s approach ultimately leads to a non-linear opti-

mization program, in contrast to the linear programming behind the max-flow min-cut

theorem and thus Dross’ approach.

Though we are able to improve on Theorem 1.4 using Delcourt and Postle’s approach,

it is important to highlight that their approach can a priori not be used to (asymptotically)

resolve Conjecture 1.6. Indeed, it turns out that for every pair of positive codegree to be

contained in a clique of order five requires the essential minimum codegree to be greater

than 5n/6. In particular, our application of Delcourt and Postle’s method unavoidably

achieves weaker bounds in comparison to their original result in [6]. Surprisingly, it was

the opposite for Lee’s application of Dross’s approach: Whereas Dross derived an upper

bound of 9/10, Theorem 3.7 yields an upper bound of roughly 0.88 < 9/10.

4.2 EDGE-GADGETS

One of fundamental ingredients is the usage of the so-called edge-gadgets which were

first introduced in [5]. We naturally modify the definition for our setting.

Definition 4.2 (ψK,p). Let H be a 3-uniform hypergraph. For K ∈ K5(H) and p ∈ E(∂K),
let Ej(K, e) = {e ∈ E(K) : |e ∩ p| = j} for all j ∈ {0, 1, 2}. The edge-gadget of p in K is the

function

ψK,p : E(H) −→ R

e 7−→



+13 , e ∈ E0(K, p)

−16 , e ∈ E1(K, p)

+13 , e ∈ E2(K, p)

0, otherwise.

What makes these gadgets so useful is that they allow us to alter the weight of the

pair p without changing the weight of other pairs. Indeed, it turns out that ψK,p acts

like an indicator of p, meaning that it assigns weight one to p and zero to all the other

pairs. However, this comes at the cost of introducing negative weights for the edges.

2
See [24, Thm. 5.1].
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Proposition 4.3. Let K ∈ K5(H) and p ∈ E(∂K). Then we have for all q ∈ E(∂H)

deg
ψK,p(q) = 1p=q.

Proof. Clearly, deg
ψK,p(q) = 0 for all q ∈ E(∂H) \ E(∂K). So, consider q ∈ E(∂K).

If |p ∩ q| = 0, then there is exactly one edge in E0(K, p) and exactly two edges in

E1(K, p) containing q, hence

deg
ψK,p(q) =

1

3
−
2

6
= 0.

If |p ∩ q| = 1, then there are exactly two edges in E1(K, p) and exactly one edge in

E2, (K, p) containing q, hence

deg
ψK,p(q) =

−2

6
+
1

3
= 0.

Lastly, if |p ∩ q| = 2, i.e. p = q, then there are three edges in E2(K, p) containing p, so

deg
ψK,p(q) =

3

3
= 1.

From Proposition 4.3, we can immediately construct weightings on the edges that

satisfy the pair condition if we have no restrictions on our weights.

Corollary 4.4. Let H be a 3-uniform hypergraph such that every pair p ∈ E (∂H) is

contained in at least one 5-clique. Then there exists w : E(H) −→ R such that

deg
w(p) = 1

for all pairs p ∈ V (∂H).

Proof. For every pair p, let Kp be a 5-clique containing p. Then, by Proposition 4.3,

w =
∑

p∈V(∂H)

ψKp,p

is as desired.

4.3 THE WEIGHTING

Before we begin to define our weighting, let us first give a couple more definitions.

Definition 4.5 (Kr(H, F), Kr(H, S)). For a subhypergraph F ⊆ H, S ⊆ V(H) and r ∈
{3, 4, 5}, let

Kr(H, F) = {K ∈ Kr(H) : F ⊆ K} , Kr(H, S) = Kr(H,H[S]).

Definition 4.6 (CN). Given P ⊆ V(H)(2), let the common co-neighborhood of P equal

CN(P) =
⋂
p∈P

N(p).

Furthermore, for S ⊆ V(H) we define

CN(S) = CN
(
S(2)

)
.
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For the discussion below, assume for now that δess

2 (H) > 5n/6 with n = v(H) ⩾ 5. It

is then evident that

K5(H,p) ̸= ∅

for every pair p ∈ E(∂H). Indeed, by definition, there must be an edge e ∈ E(H)
witnessing p ∈ E(∂H); e can be extended to some tetrahedron K since

|CN(e)| ⩾ δess

2 (H) − 3 · (1− δess

2 (H)) > 0.

Similarly, K can be extended to a K
(3)
5 since

|CN(K)| ⩾ δess

2 (H) − 5 · (1− δess

2 (H)) > 6 · 5n
6

− 5n = 0.

As seen in Corollary 4.4, the only constraint not immediately satisfied in our usage of

edge-gadgets is non-negativity. Indeed, if every edge has a non-negative weight, then

the condition on the pairs already implies that the weight of each edge is at most one,

making it a fractional Steiner triple system. For this, we want a more general approach

than the one in the proof of Corollary 4.4. Namely, to be more flexible, instead of relying

on a single edge-gadget per pair, it seems advantageous to distribute the demand of the

pair over multiple edge-gadgets of p. Hence, one natural approach would be to make the

ansatz

w =
∑

p∈E(∂H)

∑
K∈K5(H,p)

λK,p ·ψK,p (λK,p ∈ R)

for our fractional Steiner triple system. One obvious constraint on the scalars is∑
K∈K5(H,p)

λK,p = 1

for every pair p ∈ E(∂H). Indeed, using Proposition 4.3, we see that

deg
w(q) =

∑
e∈E(H): q⊆e

 ∑
p∈E(∂H)

∑
K∈K5(H,p)

λK,p ·ψK,p(e)


=

∑
p∈E(∂H)

∑
K∈K5(H,p)

λK,p ·

 ∑
e∈E(H): q⊆e

ψK,p(e)


=

∑
p∈E(∂H)

∑
K∈K5(H,p)

λK,p · 1p=q

=
∑

K∈K5(H,q)

λK,q.

From this calculation, it is also clear that this condition is sufficient for every pair to get

weight one.

For the scalars, we introduce a non-uniform distribution that utilizes the structure of

H. Namely, we imagine how at first every pair with positive codegree holds its demand

of 1. Then, each pair distributes that demand uniformly among the K
(3)
3 ’s containing that

pair. Those triples in turn distribute the demand uniformly among all K
(3)
4 ’s containing

them, until every K
(3)
5 got from every pair a certain fraction of the pair’s demand. This

fraction will then serve as λK,p.
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1
|K3(H,p)|

1
|K3(H,p)|

1
|K4(H,T)|1

1
|K3(H,p)|

1
|K4(H,T)|

1
|K5(H,Q)|

CN(p)

CN(T)

CN(Q)

Figure 4.1: Sketch for how the demand of p is distributed among the K
(3)
5 ’s

Note that a K
(3)
4 containing a pair p will get a fraction of p’s demand through two

distinct triples, where the fraction received from each triple may be different. Hence,

to make this distribution
3

of the demand formal, it seems natural to introduce ordered
variants of the previous definitions.

Definition 4.7 (OKr(H)). Let H be a 3-uniform hypergraph. For r ∈ {2, 3, 4, 5}, an ordered
r-clique of G is an r-tuple K = (v1, . . . , vr) ∈ V(H)r such that H[{v1, . . . , vr}] ∈ Kr(H).

The vertex set of the ordered clique is V(K) = {v1, . . . , vr} and the “⊆”-relation will

be extended in a straightforward way:

• If K,K ′
are ordered cliques, then K ′ ⊆ K if K ′

is a subsequence of K.

• If F is a subhypergraph and K an ordered clique, then F ⊆ K holds if F ⊆ H[V(K)].

The set of ordered r-cliques in H is denoted by OKr(H). Furthermore, for an ordered

r-clique K and s ⩾ r, let OKs(H,K) denote the set of ordered s-cliques containing K in

the sense of the “⊆”-relation and let OKs(H, S) denote the set of ordered s-cliques whose

vertex set contains S ⊆ V(H).

The weight for an ordered clique is now defined as follows:

Definition 4.8 (W(K)). Let H be a 3-uniform hypergraph and let r ∈ {2, 3, 4}. For every

K = (v1, . . . , vr) ∈ OKr(H), we define the weight of K to be

W(K) =

r∏
i=2

1

|Ki+1(H, {v1, . . . , vi})|
.

For the sake of clarity, we may also writeW(v1, . . . , vr) forW(K).

3
Or delegation, as Delcourt and Postle call it.
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For the sake of completeness, we will also define edge-gadgets for ordered cliques.

Instead of having the pair explicitly given, the pair for whom the edge-gadget covers the

demand is implicitly given by the ordered clique.

Definition 4.9 (ψK). Let H be a 3-uniform hypergraph. For K = (v1, . . . , v5) ∈ OK5(H)
and T ∈ K3(H), we define

ψK(T) = ψH[V(K)],v1v2(T).

Similarly, we define ψK(O) = ψK(H[V(O)]) for O ∈ OK3(H).

We can finally define our weighting:

Definition 4.10 (wH). Let H be a 3-uniform hypergraph. Define

wH : E(H) −→ R

e 7−→ 1

2

∑
K=(v1,...,v5)∈OK5(H,e)

W(v1, . . . , v4) ·ψK(e).

Note that the 1/2 is there since a pair can be ordered in two different ways.

Proposition 4.11. LetH be a 3-uniform hypergraph onn ⩾ 5 vertices with δess

2 (H) > 5n/6.
Then, the weight of each pair p ∈ E(∂H) equals

deg
wH(p) = 1.

Proof. By the discussion above, it suffices to show that

1

2

∑
K=(v1,...,v5)∈OK5(H,p):

p=v1v2

W(v1, . . . , v4) = 1.

Indeed, asW(v1, . . . , v4) doesn’t depend on v5,W(v1, v2, v3) doesn’t depend on v4 etc.,

we compute that

1

2

∑
K=(v1,...,v5)∈OK5(H,p):

p=v1v2

W(v1, . . . , v4) =
1

2

∑
K=(v1,...,v4)∈OK4(H,p):

p=v1v2

W(v1, . . . , v3)

=
1

2

∑
K=(v1,...,v3)∈OK3(H,p):

p=v1v2

W(v1, v2)

=
1

2

∑
K=(v1,v2)∈OK2(H,p):

p=v1v2

1

= 1.

4.4 REFORMULATION

The goal of the rest of this chapter is to show thatwH is non-negative and thus a fractional

Steiner triple system for sufficiently large (essential) minimum codegree. Instead of

showing this directly, however, we consider an ordered variant of the weighting.



4.4 REFORMULATION 36

Definition 4.12 (wH(O)). Let H be a 3-uniform hypergraph on n ⩾ 5 vertices with

δess

2 (H) > 5n/6. For an ordered edge O ∈ OK3(H), let

wH(O) =
1

2

∑
K=(v1,...,v5)∈OK5(H,O)

W(v1, . . . , v4) ·ψK(O).

By our extension of the “⊆”-relation to ordered cliques, it is evident that

wH(e) =
∑

O∈OK3(H,e)

wH(O).

Hence, we may prove the following, stronger result.

Theorem 4.13. Let x∗ be defined as in Theorem 4.1 and let H be a 3-uniform hypergraph

satisfying δess

2 (H) ⩾ (1− x∗) · v(H) and v(H) ⩾ 5. Then, wH(O) ⩾ 0 for all O ∈ OK3(H).
In particular, wH is a fractional Steiner triple system of H.

It will be useful to represent wH(O) in a more explicit manner.

Lemma 4.14. Let H be a 3-uniform hypergraph on n ⩾ 5 vertices with δess

2 (H) > 5n/6. If

O = (x1, x2, x3) ∈ OK3(H), then wH(O) can be written as

1

6

(
W(x1, x2) −

∑
y∈CN(x1,x2,x3)

(
W(x1, y, x2) −W(x1, x2, y) +

∑
z∈CN(x1,x2,x3,y)

(W(x1, y, x2, z) −W(x1, x2, y, z) +W(x1, y, z, x2) −W(y, z, x1, x2))

))
.

In this representation of wH(O), we can see what Delcourt and Postle refer to as

cancellation: Apart from the positive leading termW(x1, x2), similar weights are paired

up to (hopefully) cancel each other in the inner terms of the expression. For example,

W(x1, y, x2, z) andW(x1, x2, y, z) differ in their first product, which are 1/|K3(H, {x1, y})|
and 1/|K3(H, {x1, x2})| respectively. Hence, as long as the (essential) minimum codegree

is high enough, these terms can’t differ too much.

It is also worth noting that, while a substantial simplification, considering the

weights of ordered triples instead of triples doesn’t give us worse bounds, at least when

proceeding the same as below: One could considerwH(e) instead ofwH(O) by summing

up the weight of each ordering of e and then using the above formula for each of those

weights of orderings; ignoring what we will later define aswH,1, it could still be reduced

to an optimization problem where we would try to minimize wH(e); namely, it would

still be possible to simplify the problem to only depend on what we will later call common
co-neighborhood densities; it would even be possible to use the same symmetrization

arguments to reduce the number of densities considered and theoretically get tighter

bounds on those. However, it turns out that choosing those densities for each ordered

weight as given in Theorem 4.24 and Lemma 4.29 would still satisfy the bounds and

witness for (essential) minimum codegree smaller than (1− x∗) · v(H) that wH(e) may

become negative.

Proof of Lemma 4.14. By explicitly using Definition 4.2, we see that wH(O) equals

1

2

∑
y∈CN(x1,x2,x3),
z∈CN(x1,x2,x3,y)

(
W(x1, x2, x3, y) ·

(
+
1

3

)
+W(x1, x2, y, x3) ·

(
+
1

3

)
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+W(x1, y, x2, x3) ·
(
−
1

6

)
+W(y, x1, x2, x3) ·

(
−
1

6

)
+W(x1, x2, y, z) ·

(
+
1

3

)
+W(x1, y, x2, z) ·

(
−
1

6

)
+W(y, x1, x2, z) ·

(
−
1

6

)
+W(x1, y, z, x2) ·

(
−
1

6

)
+W(y, x1, z, x2) ·

(
−
1

6

)
+W(y, z, x1, x2) ·

(
+
1

3

))
.

Recall that the order of the starting pair doesn’t change the value ofW(·). In particular,

we have by that symmetry

W(x1, y, x2, x3) =W(y, x1, x2, x3),

W(x1, y, x2, z) =W(y, x1, x2, z),

W(x1, y, z, x2) =W(y, x1, z, x2).

Hence, the above expression for wH(O) can be rewritten as

1

6

∑
y∈CN(x1,x2,x3)

∑
z∈CN(x1,x2,x3,y)

(
W(x1, x2, x3, y) +W(x1, x2, y, x3)

−W(x1, y, x2, x3) +W(x1, x2, y, z)

−W(x1, y, x2, z) −W(x1, y, z, x2)

+W(y, z, x1, x2)

)
.

Note that three of the inner terms do not depend on z, so summing over all

z ∈ CN(x1, x2, x3, y) cancels out the last product term in e.g. W(x1, x2, y, x3).
Thus, we get

1

6

∑
y∈CN(x1,x2,x3)

(
W(x1, x2, x3) +W(x1, x2, y) −W(x1, y, x2)+

∑
z∈CN(x1,x2,x3,y)

(
W(x1, x2, y, z) −W(x1, y, x2, z) −W(x1, y, z, x2) +W(y, z, x1, x2)

))
.

Furthermore, note thatW(x1, x2, x3) doesn’t depend on y, so similar manipulations

and additional rearranging give us the desired expression for wH(O).

For the optimization step, it will be more convenient to work with the following

function:

Definition 4.15 (wH,1). Let H be a 3-uniform hypergraph on n ⩾ 5 vertices with

δess

2 (H) > 5n/6. For O = (x1, x2, x3) ∈ OK3(H), let

wH,1(O) = 1− 6 |K3(H, {x1, x2})|wH(O)

= |CN(x1, x2)|
∑

y∈CN(x1,x2,x3)

(
W(x1, y, x2) −W(x1, x2, y)
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+
∑

z∈CN(x1,x2,x3,y)

(W(x1, y, x2, z) −W(x1, x2, y, z)

+W(x1, y, z, x2) −W(y, z, x1, x2))

)
.

Clearly, it suffices to show the following:

Theorem 4.16. Let x∗ be defined as in Theorem 4.1 and let H be a 3-uniform hypergraph

satisfying δess

2 (H) ⩾ (1−x∗) ·v(H) and v(H) ⩾ 5. Then,wH,1(O) ⩽ 1 for allO ∈ OK3(H).

4.5 OPTIMIZATION

Ideally, our goal can be phrased as follows
4
: Determine

sup

d ∈
[
0,
1

6

)
: lim

n−→∞ sup

H 3-uniform :
v(H)⩾n,

δess

2 (H)⩾(1−d)v(H)

max

O∈K3(H)
wH,1(O) ⩽ 1

 .
This turns out to still be too difficult, so we will one by one relax the problem. First,

to abstract away from H, we will rewrite wH,1 using scaled versions of CN andW.

Definition 4.17 (ĈN). LetH be a 3-uniform hypergraph with V(H) ̸= ∅. For P ⊆ V(H)(2)
and S ⊆ V(H), we define the common co-neighborhood density to be

ĈN(P) =
|CN(P)|

v(H)
∈ [0, 1], ĈN(S) =

|CN(S)|

v(H)
∈ [0, 1].

Similarly, for an ordered r-clique K = (v1, . . . , vr) ∈ OKr(H), let

Ŵ(K) = v(H)r−1W(K) =

r∏
i=2

v(H)

|OKi+1(H, {v1, . . . , vi})|
=

r∏
i=2

1∣∣∣ĈN(v1, . . . , vi)
∣∣∣ .

The following is then immediate:

Proposition 4.18. LetH be a 3-uniform hypergraph with v(H) ⩾ 5 and δess

2 (H) ⩾ 5v(H)/6.
We have

wH,1(O) =
∣∣∣ĈN(x1, x2)

∣∣∣ · 1

v(H)

∑
y∈CN(x1,x2,x3)

(
Ŵ(x1, y, x2) − Ŵ(x1, x2, y)

+
1

v(H)

∑
z∈CN(x1,x2,x3,y)

(Ŵ(x1, y, x2, z) − Ŵ(x1, x2, y, z)

+ Ŵ(x1, y, z, x2) − Ŵ(y, z, x1, x2))

)
.

4
Technically, we additionally have a minimum degree condition on the shadow of H.
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In this representation ofwH,1, all the information ofHwe really need are the common

co-neighborhood densities of a small number of vertex subsets. So, instead of considering

H itself, we will work with the common co-neighborhood densities directly using the

bounds implied by the properties of H.

To establish these bounds, we review some properties of ĈN: Obviously, ĈN

is monotonically decreasing with respect to ⊆. Furthermore, we have that ĈN is

supermodular.

Proposition 4.19. Let H be a 3-uniform hypergraph with V(H) ̸= ∅. If A,B ⊆ V(H)(2),
then

ĈN(A ∪ B) ⩾ ĈN(A) + ĈN(B) − ĈN(A ∩ B).

Proof. Set X =
⋂
a∈AN(a) and Y =

⋂
b∈BN(b). Obviously,

|X ∩ Y| = |X|+ |Y|− |X ∪ Y| .

Note however, that |X| = v(H) · ĈN(A) and |Y| = v(H) · ĈN(B). Moreover,

|X ∩ Y| =

∣∣∣∣∣∣
⋂

p∈A∪B
N(p)

∣∣∣∣∣∣ = v(H) · ĈN(A ∪ B).

Similarly, we have

|X ∪ Y| =

∣∣∣∣∣
( ⋂
a∈A

N(a)

)
∪

(⋂
b∈B

N(b)

)∣∣∣∣∣ ⩽
∣∣∣∣∣∣
⋂

p∈A∩B
N(p)

∣∣∣∣∣∣ = v(H) · ĈN(A ∩ B).

Hence, dividing by v(H), we are done.

Hence, for vertices v1, . . . , v4 ∈ V(H), where H satisfies the usual assumptions, we

have

ĈN(v1, v2, v3) ⩾ ĈN({v1v2, v1v3}) + ĈN(v2, v3) − ĈN(∅)

⩾
(
ĈN(v1, v2) + ĈN(v1, v3) − ĈN(∅)

)
+ ĈN(v2, v3) − 1

⩾ ĈN(v1, v2) + ĈN(v1, v3) + ĈN(v2, v3) − 2

⩾ ĈN(v1, v2) + ĈN(v1, v3) − 1− d,

ĈN(v1, . . . , v4) ⩾ ĈN
(
{v1, v2, v3}

(2) ∪ {v1, v2, v4}
(2)
)
+ ĈN(v3, v4) − ĈN(∅)

⩾
(
ĈN (v1, v2, v3) + ĈN (v1, v2, v4) − ĈN (v1, v2)

)
+ ĈN(v3, v4) − 1

⩾ ĈN (v1, v2, v3) + ĈN (v1, v2, v4) − ĈN (v1, v2) − d.

So, our goal is now to solve the following program (P1) for d ∈ [0, 1/6):

Maximize wH,1(O) such that for all y ∈ CN(x1, x2, x3) and z ∈ CN(x1, x2, x3, y)

ĈN(x1, x2) ∈ [1− d, 1],

ĈN(x1, y) ∈ [1− d, 1],

ĈN(y, z) ∈ [1− d, 1],
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ĈN(x1, x2, y) ∈
[
ĈN(x1, x2) + ĈN(x1, y) − 1− d, ĈN(x1, x2)

]
,

ĈN(x1, y, z) ∈
[
ĈN(x1, y) + ĈN(y, z) − 1− d, ĈN(x1, y)

]
,

ĈN(x1, x2, y, z) ∈
[
ĈN (x1, x2, y) + ĈN (x1, y, z) − ĈN (x1, y) − d, ĈN (x1, x2, y)

]
.

We note that wH,1(O) is under our (essential) minimum codegree assumption a

well-defined, continuous function on the domain of (P1). Indeed, it’s clear that all the

common co-neighborhood densities are strictly positive and at most 1.

To emphasize that we now think in variables, fix an enumeration y1, y2, . . . on

CN(x1, x2, x3) and zi,1, zi,2, . . . on CN(x1, x2, x3, yi) for every yi ∈ CN(x1, x2, x3). Let

R0 = |CN(x1, x2, x3)| and Ri = |CN(x1, x2, x3, yi)| for i ∈ [R0]. We may now relabel the

common co-neighborhood densities as follows:

ĈN(x1, x2) −→ e0,

ĈN(x1, yi) −→ ei,

ĈN(yi, zi,j) −→ fi,j,

ĈN(x1, x2, yi) −→ qi,0 for i ∈ [R0],

ĈN(x1, yi, zi,j) −→ qi,j for i ∈ [R0], j ∈ [Ri],

ĈN(x1, x2, yi, zi,j) −→ pi,j for i ∈ [R0], j ∈ [Ri].

Changing the variable names accordingly in wH,1 gives

Ŵ1 =
e0
v(H)

R0∑
i=1

(
1

qi,0

(
1

ei
−
1

e0

)

+
1

v(H)

Ri∑
j=1

(
1

pi,j

(
1

qi,j

(
1

ei
−

1

fi,j

)
+

1

qi,0

(
1

ei
−
1

e0

))))
.

Thus, (P1) now reads:

Maximize Ŵ1 such that for all i ∈ [R0] and j ∈ [Ri]

e0 ∈ [1− d, 1],

ei ∈ [1− d, 1],

fi,j ∈ [1− d, 1],

qi,0 ∈ [e0 + ei − 1− d, e0] ,

qi,j ∈
[
ei + fi,j − 1− d, ei

]
,

pi,j ∈
[
qi,0 + qi,j − ei − d, qi,0

]
,

R0 ∈
[
1

2
· v(H), e0 · v(H)

]
,

Ri ∈ [0, qi,0 · v(H)] .

Note that the bounds from R0 and Ri are obtained by considering the properties of

ĈN and the fact that d ∈ [0, 1/6).
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4.5.1 Reduction to 8 variables

To reduce the number of variables involved in (P1), we first employ some symmetrization

arguments.

Lemma 4.20. The maximum value of (P1) is achieved by a point where for all i ∈ [R0]
and j, j ′ ∈ [Ri], we have

fi,j = fi,j ′ , qi,j = qi,j ′ , pi,j = pi,j ′ .

Proof. Since the domain of (P1) is closed and bounded and Ŵ1 is well-defined and

continuous on the domain of (P1), we find that (P1) has a global maximum. Let P0 be a

point that achieves this maximum. For each i, let ji ∈ [Ri] be the index for which the

inner term

1

pi,j

(
1

qi,j

(
1

ei
−

1

fi,j

)
+

1

qi,0

(
1

ei
−
1

e0

))
is maximized over all j ∈ [Ri]. Then the point P ′

0 obtained from P0 by setting

fi,j = fi,ji ,

qi,j = qi,ji ,

pi,j = pi,ji

for all i ∈ [R] and j ∈ [Ri] is also a point that achieves this maximum. Moreover, since the

constraints for fi,j, qi,j, pi,j are identical for each j ∈ [Ri], it follows that P ′
0 also satisfies

the constraints of (P1) as desired.

Letting ri = Ri/v(H), fi,j = fi,ji , pi = pi,ji , qi = qi,ji , we form a new program (P2)

with a new objective function that has the same optimum value as (P1):

Ŵ2 =
e0
v(H)

R0∑
i=1

(
1

qi,0

(
1

ei
−
1

e0

)
+ ri

(
1

pi

(
1

qi

(
1

ei
−
1

fi

)
+

1

qi,0

(
1

ei
−
1

e0

))))
.

Thus, (P2) reads:

Maximize Ŵ2 such that for all i ∈ [R0]

e0 ∈ [1− d, 1],

ei ∈ [1− d, 1],

fi ∈ [1− d, 1]

qi,0 ∈ [e0 + ei − 1− d, e0] ,

qi ∈ [ei + fi − 1− d, ei] ,

pi ∈ [qi,0 + qi − ei − d, qi,0] ,

R0 ∈
[
1

2
· v(H), e0 · v(H)

]
,

ri ∈ [0, qi,0] .

Corollary 4.21. OPT(P1) = OPT(P2).
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Lemma 4.22. The maximum value of (P2) is achieved by a point where for all i, i ′ ∈ [R0]

ei = ei ′ , fi = fi ′ , qi,0 = qi ′,0, qi = qi ′ , pi = pi ′ , ri = ri ′ .

Proof. Again, let P0 be a point that achieves this maximum. Let i ′ ∈ [R0] be the index for

which the inner term

1

qi,0

(
1

ei
−
1

e0

)
+ ri

(
1

pi

(
1

qi

(
1

ei
−
1

fi

)
+

1

qi,0

(
1

ei
−
1

e0

)))
is maximized over all i ∈ [R0]. Then the point P ′

0 obtained from P0 by setting

ei = ei ′ ,

fi = fi ′ ,

qi,0 = qi ′,0,

qi = qi ′ ,

pi = pi ′ ,

ri = ri ′

for all i ∈ [R] is also a point that achieves this maximum. Moreover, since the constraints

for ei, fi, qi,0, qi, pi, and ri are identical for each i ∈ [R0], it follows that P ′
0 also satisfies

the constraints of (P2) as desired.

Letting r0 = R0/v(H), e = ei ′ , f = fi ′ , q0 = qi ′,0, q = qi ′ , p = pi ′ , r = ri ′ , we form a

new program (P3) with a new objective function, but the same optimum value as (P2):

Ŵ3 = e0 · r0
(
1

q0

(
1

e
−
1

e0

)
+ r

(
1

p

(
1

q

(
1

e
−
1

f

)
+
1

q0

(
1

e
−
1

e0

))))
.

Thus, (P3) reads:

Maximize Ŵ3(e0, e, f, q0, q, p, r0, r) subject to

e0 ∈ [1− d, 1],

e ∈ [1− d, 1],

f ∈ [1− d, 1]

q0 ∈ [e0 + e− 1− d, e0] ,

q ∈ [e+ f− 1− d, e] ,

p ∈ [q0 + q− e− d, q0] ,

r0 ∈
[
1

2
, e0

]
,

r ∈ [0, q0] .

Corollary 4.23. OPT(P1) = OPT(P3).

At this point, the program (P3) would be small enough to be numerically solved by a

commercial solver. Such an implementation agreeing with our result can be found in

Section C.1. However, the advantage of our proof is that we get an exact solution for

Theorem 4.1.
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4.5.2 Reduction to two variables

Theorem 4.24. OPT(P3) = OPT(P4) where (P4) is defined as follows:

Maximize Ŵ4(e0, f) = e
2
0

(
1
1−d − 1

e0

e0 − 2d
+

e0 − 2d

e0 + f− 1− 4d

(
1
1−d − 1

f

f− 2d
+

1
1−d − 1

e0

e0 − 2d

))
subject to e0 ∈ [1− d, 1],

f ∈ [1− d, 1].

e0

e

f

r0

q0

q

p

r

Figure 4.2: Dependency diagram of the variables’ constraints in (P3)

Proof. For a function f, let the ramp function of f be f+ = max(f, 0). Instead of Ŵ3, we

will consider

Ŵ4 = e0 · r0

(
1

q0

(
1

e
−
1

e0

)+

+ r

(
1

p

(
1

q

(
1

e
−
1

f

)+

+
1

q0

(
1

e
−
1

e0

)+
)))

as our objective function. Note that Ŵ4 is also well-defined and continuous on the

domain of (P3). In particular, if e ⩽ e0, e ⩽ f, then Ŵ4 and Ŵ3 correspond for that point.

Consider first r0. With the ramp functions, it is clear that the term with which r0
is multiplied with is positive, meaning that Ŵ4 is monotonically increasing if all the

remaining variables are fixed. So, to attain the maximum, we must have r0 = e0. By the

same logic, r = q0. To keep track of the substitutions, we let σ = {r0 −→ e0, r −→ q0} be

the set of all subsitutions we have made.
5

Plugging this in, we get for σ(Ŵ4)

e20

(
1

q0

(
1

e
−
1

e0

)+

+ q0

(
1

p

(
1

q

(
1

e
−
1

f

)+

+
1

q0

(
1

e
−
1

e0

)+
)))

.

Again, by the same logic, we must have that p is as small as possible, so p =
q0 + q− e− d. Updating σ accordingly, we get for σ(Ŵ4)

e20

(
1

q0

(
1

e
−
1

e0

)+

+ q0

(
1

q0 + q− e− d

(
1

q

(
1

e
−
1

f

)+

+
1

q0

(
1

e
−
1

e0

)+
)))

.

5σwill be implicitly updated after each subsequent subsitution.
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Next, consider q. As q0 + q− e− d > 0, we see that, for all other parameters fixed,

the functions

q 7−→ 1

q0 + q− e− d
, q 7−→

(
1

q

(
1

e
−
1

f

)+

+
1

q0

(
1

e
−
1

e0

)+
)

are both positive and monotonically decreasing. Hence, as both the sum and product of

positive, monotonically decreasing functions is positive and montononically decreasing,

we see that σ(Ŵ4) as a whole is monotonically decreasing in q with all other parameters

fixed. Thus, we set q = e+ f− 1− dwhich yields for σ(Ŵ4)

e20

(
1

q0

(
1

e
−
1

e0

)+

+
q0

q0 + f− 1− 2d

( (
1
e −

1
f

)+
e+ f− 1− d

+
1

q0

(
1

e
−
1

e0

)+
))

.

Consider now q0. Since −1/2 < −3d ⩽ f− 1− 2d ⩽ −2d < 0 on the domain of f and

q0 ⩾ e0 + e− 1− d ⩾ 1− 3d >
1

2

on the domain of e0 and e respectively, we have that

q0 7−→
q0

q0 + f− 1− 2d

is a positive, monotonically decreasing function for all choices of e0, e and f in their

respective domain. As the same thing is obviously true for q0 7−→ 1/q0, we attain the

maximum if q0 is chosen as small as possible, i.e. q0 = e0 + e− 1− d. This yields

σ(Ŵ4) = e
2
0 ·


(
1
e −

1
e0

)+
e0 + e− 1− d

+

(e0 + e− 1− d)

(
( 1e−

1
f )

+

e+f−1−d +

(
1
e−

1
e0

)+
e0+e−1−d

)
e0 + e+ f− 2− 3d

 .
Finally, consider e. Clearly, by similar types of arguments as before, the functions

e 7−→
(
1
e −

1
f

)+
e+ f− 1− d

, e 7−→

(
1
e −

1
e0

)+
e0 + e− 1− d

are non-neagtive and monotonically decreasing in e for all e0, f as given by the domain.

Furthermore, since −1/2 < f− 1− 2d ⩽ −2d < 0 and e0 + e− 1− d ⩾ 1− 3d > 1/2, the

function

e 7−→ e0 + e− 1− d

e0 + e+ f− 2− 3d
=

e0 + e− 1− d

(e0 + e− 1− d) + f− 1− 2d

is positive and monotonically decreasing in e for all e0, f as given by the domain.

Hence, as the product and sum of non-negative, monotonically decreasing functions

is also non-negative and monotonically decreasing, we get an optimal solution for

e = 1− d. As the ramp functions are, because of the substitution e −→ 1− d, obsolete,

we get

σ(Ŵ4) = e
2
0

(
1
1−d − 1

e0

e0 − 2d
+

e0 − 2d

e0 + f− 1− 4d

(
1
1−d − 1

f

f− 2d
+

1
1−d − 1

e0

e0 − 2d

))
.

This concludes the proof.

Corollary 4.25. OPT(P1) = OPT(P4).
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4.5.3 Reduction to one variable

Theorem 4.26. OPT(P4) = OPT(P5) where (P5) is defined as follows:

Maximize Ŵ5(f) =
1
1−d − 1

1− 2d
+
1− 2d

f− 4d

(
1
1−d − 1

f

f− 2d
+

1
1−d − 1

1− 2d

)
subject to f ∈ [1− d, 1].

Proof. To prove the claim, we need to show that the choice e0 = 1 is optimal. For this, we

need to do a somewhat careful analysis. We will show, one by one, that the functions

φ : [1− d, 1] −→ R⩾0, e0 7−→ e20 ·
1
1−d − 1

e0

e0 − 2d
= e0 ·

e0 − (1− d)

(1− d)(e0 − 2d)
,

ζ : [1− d, 1] −→ R⩾0, e0 7−→ e0 ·
e0 − 2d

e0 + f− 1− 4d
·

(
1
1−d − 1

f

f− 2d
+

1
1−d − 1

e0

e0 − 2d

)

are monotonically increasing on the domain of (P4). Then, since the sum and product of

non-negative, monotonically increasing functions is itself monotonically increasing, we

get that e0 = 1 is indeed the optimal choice.

For φ, it suffices to show that ln(φ) : [1− d, 1] −→ [−∞,∞) is (for fixed d ∈ [0, 1/6))
monotonically increasing in e0. This gives

ln(e0) + ln(e0 − 1+ d) − ln(1− d) − ln(e0 − 2d).

Taking the derivative with respect to e0, we get

1

e0
+

1

e0 − 1+ d
−

1

e0 − 2d
⩾ 1+

1

1− 1+ d
−

1

(1− d) − 2d
(e0 ∈ [1− d, 1])

⩾ 1+
1

d
−

1

1− 3d

> 5. (d ∈ [0, 1/6))

As the derivative is positive, ln(φ) and thereforeφ is strictly monotonically increasing.

For ζ, let 1− d ⩽ x < y ⩽ 1. We want to show that

x(x− 2d)

x+ f− 1− 4d
·

(
1
1−d − 1

f

f− 2d
+

1
1−d − 1

x

x− 2d

)
⩽

y(y− 2d)

y+ f− 1− 4d
·

(
1
1−d − 1

f

f− 2d
+

1
1−d − 1

y

y− 2d

)
.

Shuffling terms around, this is equivalent to(
x(x− 2d)

x+ f− 1− 4d
−

y(y− 2d)

y+ f− 1− 4d

)
·
1
1−d − 1

f

f− 2d

=

(
x(x− 2d)

x+ f− 1− 4d
−

y(y− 2d)

y+ f− 1− 4d

)
· f− (1− d)

(1− d)f(f− 2d)

⩽
y(y− 2d)

y+ f− 1− 4d
·
1
1−d − 1

y

y− 2d
−

x(x− 2d)

x+ f− 1− 4d
·
1
1−d − 1

x

x− 2d

=
1

1− d

(
y− (1− d)

y+ f− 1− 4d
−

x− (1− d)

x+ f− 1− 4d

)
.
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We may multiply by (1− d)(x+ f− 1− 4d)(y+ f− 1− 4d) > 0 to get

(x(x− 2d)(y+ f− 1− 4d) − y(y− 2d)(x+ f− 1− 4d)) · f− (1− d)

f(f− 2d)

= (x− y)
(
8d2 + 2d(1− f) − ((1− f) + 4d)(x+ y) + xy

)
· f− (1− d)

f(f− 2d)

⩽ (y− (1− d)) (x+ f− 1− 4d) − (x− (1− d))(y+ f− 1− 4d)

= (y− x)(f− 1− 4d) − (1− d)(x− y)

= (y− x)(f− 5d).

Hence, dividing by (y− x) > 0 and multiplying by f(f− 2d) > 0, it suffices to show(
((1− f) + 4d)(x+ y) −

(
8d2 + 2d(1− f) + xy

))
(f− (1− d)) ⩽ f(f− 2d)(f− 5d). (∗)

Note that

((1− f) + 4d)(x+ y) −
(
8d2 + 2d(1− f) + xy

)
= ((1− f) + 4d− x)︸ ︷︷ ︸

<0

y+ ((1− f) + 4d)x− 8d2 − 2d(1− f)

⩽ 2((1− f) + 4d)x− x2 − 8d2 − 2d(1− f),

where we used the assumption y > x for the last inequality. Differentiating
6

with respect

to x ∈ [1− d, 1], we obtain

2 ((1− f) + 4d) − 2x = 2 (1+ 4d− (x+ f)) ⩽ 2 (1+ 4d− 2(1− d)) = 2 (6d− 1) < 0.

Thus, since f− (1− d) ⩾ 0, the left hand side of (∗) is bounded by(
2 ((1− f) + 4d) (1− d) − (1− d)2 − 8d2 − 2d(1− f)

)
(f− (1− d))

=
(
2(2d− 1)f+ 1+ 6d− 17d2

)
(f− (1− d))

Hence, we may show that η : [1− d, 1] −→ R defined by

f 7−→ f(f− 2d)(f− 5d) −
(
2(2d− 1)f+ 1+ 6d− 17d2

)
(f− (1− d))

is non-negative for all d ∈ [0, 1/6). Note that η expands out to

η(f) = f3 + (2− 11d) f2 +
(
23d2 − 3

)
f+

(
17d3 − 23d2 + 5d+ 1

)
It follows that the derivative of η is

η ′(f) = 3f2 + (4− 22d)︸ ︷︷ ︸
>0

f+
(
23d2 − 3

)
⩾ 3 (1− d)2 + (4− 22d) (1− d) +

(
23d2 − 3

)
= 4 (1− 2d) (1− 6d)

> 0.

As d < 1/6, η ′(f) is positive, meaning that η strictly monotonically increasing. Hence,

η is indeed non-negative as

η(1− d) = (1− d)(1− 3d)(1− 6d) > 0.

Thus, we have shown that ζ is monotonically increasing in e0, showing that e0 = 1
yields the optimal value for (P4). Plugging that in gives the objective function of (P5).

Corollary 4.27. OPT(P1) = OPT(P5).
6
For fixed d ∈ [0, 1/6) and f ∈ [1− d, 1].
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4.5.4 The final optimization

Despite reducing our optimization program to only one variable, solving (P5) for general

d ∈ [0, 1/6) remains somewhat tedious, especially by hand. However, we will be able to

determine the optimal d for which OPT(P5) ⩽ 1.
The following proposition will prove to be crucial:

Proposition 4.28. The polynomial p(x) = 8x3 − 22x2 + 10x − 1 has a unique root

x∗ ≈ 0.1421657737 within the interval [0, 1/6]. In particular, p(x) < 0 for 0 ⩽ x < x∗ and

p(x) > 0 for x∗ < x ⩽ 1/6.

Proof. To prove the uniqueness, note that for x ∈ [0, 1/6]

p ′(x) = 24x2 − 44x+ 10 ⩾ −
44

6
+ 10 > 0.

Hence, p is strictly, monotonically increasing on the interval [0, 1/6]. Since, p(0) = −1
and p(1/6) = 5/54 > 0, this concludes the proof.

Lemma 4.29. For d ∈ [0, 1/6), we have

Ŵ5(1) ⩽ 1 ⇐⇒ d ⩽ x∗.

In particular, Ŵ5(1) = 1 if and only if d = x∗.

Proof. Consider the assignment f = 1. We then have

Ŵ5(1) =
1
1−d − 1

1− 2d
+
1− 2d

1− 4d

(
1
1−d − 1

1− 2d
+

1
1−d − 1

1− 2d

)

=
1
1−d − 1

1− 2d
+

2

1− 4d

(
1

1− d
− 1

)
=

(
1

1− 2d
+

2

1− 4d

)
d

1− d

=
(1− 4d) + 2 (1− 2d)

(1− 2d)(1− 4d)

d

1− d

=
8d2 − 3d

8d3 − 14d2 + 7d− 1
.

Note that 8d3 − 14d2 + 7d − 1 = (d − 1)(2d − 1)(4d − 1) < 0 since d ∈ [0, 1/6].
However, by Proposition 4.28, we know that

d > x∗ ⇐⇒ 8d3 > 22d2 − 10d+ 1 ⇐⇒ 8d3 − 14d2 + 7d− 1 > 8d2 − 3d

⇐⇒ 1 <
8d2 − 3d

8d3 − 14d2 + 7d− 1
⇐⇒ Ŵ5(1) > 1,

where we used 8d3 − 14d2 + 7d − 1 < 0 for the third equivalence. In particular, these

equivalences also hold if every “<” and “>” is replaced by “=”.

Corollary 4.30. We have OPT(P5) > 1 for all d > x∗.

Remark 4.31. It is interesting to note that f = 1 doesn’t yield the maximum for d > x∗.

This is not too hard to show and can be seen in Figure 4.3. However, for d ⩽ x∗ this

assignment is indeed optimal.
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Figure 4.3: Ŵ5(f) for d = 0 to d = 1/6 and d = x∗

Theorem 4.32. For d ⩽ x∗, OPT(P5) is obtained by f = 1. In particular,

OPT(P5) ⩽ 1

where equality holds if only if d = x∗.

Proof. We first expand Ŵ5:

Ŵ5 =
1
1−d − 1

1− 2d
+
1− 2d

f− 4d

(
1
1−d − 1

f

f− 2d
+

1
1−d − 1

1− 2d

)

=
d

(1− d)(1− 2d)
+
1− 2d

1− d

1

f− 2d

1

f− 4d
− (1− 2d)

1

f

1

f− 2d

1

f− 4d
+

d

1− d

1

f− 4d
.

To finish the proof, we only need to show that Ŵ5 is monotonically increasing in f

for fixed d ∈ [0, x∗]. The claim then follows from Lemma 4.29. To do so, we will (up to

a positive constant) calculate the derivative of Ŵ5 with respect to f and show that it is

non-negative. For that, we will show that actually Ŵ ′
5 is monotonically decreasing in f

for fixed d ∈ [0, x∗]. However, it will turn out that Ŵ ′
5(1) ⩾ 0, completing the proof:

Multiplying Ŵ5 by (1− d)/(1− 2d) > 0 and ignoring constant terms, consider

φ : [1− d, 1] −→ R, f 7−→ d

1− 2d

1

f− 4d
+

1

f− 2d

1

f− 4d
− (1− d)

1

f

1

f− 2d

1

f− 4d
.

The derivative of φ is

φ ′(f) =
−d

1− 2d

1

(f− 4d)2
−

1

(f− 2d)2
1

f− 4d
−

1

f− 2d

1

(f− 4d)2

+
1− d

f2
1

f− 2d

1

f− 4d
+
1− d

f

1

(f− 2d)2
1

f− 4d
+
1− d

f

1

f− 2d

1

(f− 4d)2
.

We want to show that φ ′
is monotonically decreasing in f for fixed d ∈ [0, x∗].

Consider the functions

ψ1 : [1− d, 1] −→ R⩾0, f 7−→
(
f− (1− d)

f

)
1

f− 2d

1

(f− 4d)2
,
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ψ2 : [1− d, 1] −→ R⩾0, f 7−→
(
f− (1− d)

f

)
1

(f− 2d)2
1

f− 4d
,

ψ3 : [1− d, 1] −→ R⩾0, f 7−→
1

f− 4d

(
d

1− 2d

1

f− 4d
−
1− d

f2
1

f− 2d

)
.

Note that φ ′ = −(ψ1 + ψ2 + ψ3). Hence, it suffices to show that each ψi is

monotonically increasing in f.

For ψ1, we will equivalently show that

(ln(ψ1))(f) = ln(f− (1− d)) − ln(f) − ln(f− 2d) − 2 ln(f− 4d)

is monotonically increasing. For that, we take the derivative:

(ln(ψ1))
′(f) =

1

f− (1− d)
−
1

f
−

1

f− 2d
−

2

f− 4d
.

To show that the derivative is non-negative, it suffices to show

1

f− (1− d)
⩾
1

f
+

1

f− 2d
+

2

f− 4d

⇐⇒ 1 ⩾
f− (1− d)

f
+
f− (1− d)

f− 2d
+
2(f− (1− d))

f− 4d

=
f− (1− d)

f
+

(f− 2d) − (1− 3d)

f− 2d
+ 2 · (f− 4d) − (1− 5d)

f− 4d
.

Clearly, the last expression is monotonically increasing in f, meaning that w.l.o.g. we

may consider f = 1. This gives

1 ⩾ d+
d

1− 2d
+

2d

1− 4d

⇐⇒ 8d2 − 6d+ 1 ⩾ 8d3 − 14d2 + 4d

⇐⇒ 0 ⩾ 8d3 − 22d2 + 10d− 1.

As the last inequality holds by Proposition 4.28, the derivative of ln(ψ1) is indeed

non-negative and we are done.

We proceed similarly for ψ2:

(ln(ψ2))(f) = ln(f− (1− d)) − ln(f) − 2 ln(f− 2d) − ln(f− 4d),

(ln(ψ2))
′(f) =

1

f− (1− d)
−
1

f
−

2

f− 2d
−

1

f− 4d
.

Comparing (ln(ψ2))
′
with (ln(ψ1))

′
, we see that (ln(ψ2))

′ ⩾ (ln(ψ1))
′ ⩾ 0, giving

us immediately that ψ2 is monotonically increasing.

For ψ3, we equivalently show that

−ψ3(f) =
1

f− 4d

(
1− d

f2
1

f− 2d
−

d

1− 2d

1

f− 4d

)
is monotonically decreasing. Actually, we will show that

ζ(f) =
1− d

f2
1

f− 2d
−

d

1− 2d

1

f− 4d
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is monotonically decreasing in f for fixed d ∈ [0, x∗]. Indeed, that would imply that

1− d

f2
1

f− 2d
−

d

1− 2d

1

f− 4d
⩾
1− d

1− 2d
−

d

1− 2d

1

1− 4d

=
1

1− 2d

(
1− d−

d

1− 4d

)
>

1

1− 2d
(1− d− 3d) (1− 4d > 1/3)

> 0,

meaning that ζ is also positive. As f 7−→ 1/(f − 4d) is also a positive, monotonically

decreasing function, it would follow that −ψ3, as the product of positive, monotonically

decreasing functions, is monotonically decreasing.

Hence, consider 1− d ⩽ f < g ⩽ 1. We need to show that

1− d

f2(f− 2d)
−

d

1− 2d

1

f− 4d
⩾

1− d

g2(g− 2d)
−

d

1− 2d

1

g− 4d

⇐⇒ (1− d)

(
1

f2(f− 2d)
−

1

g2(g− 2d)

)
⩾

d

1− 2d

(
1

f− 4d
−

1

g− 4d

)
.

Note that

1

f2(f− 2d)
−

1

g2(g− 2d)
=
g2(g− 2d) − f2(f− 2d)

f2(f− 2d)g2(g− 2d)

=
(g− f)

(
f2 + fg+ g2 − 2d(g+ f)

)
f2(f− 2d)g2(g− 2d)

,

1

f− 4d
−

1

g− 4d
=

(g− 4d) − (f− 4d)

(f− 4d)(g− 4d)

=
g− f

(f− 4d)(g− 4d)
.

Thus, it suffices to show that

(1− d)
(g− f)

(
f2 + fg+ g2 − 2d(g+ f)

)
f2(f− 2d)g2(g− 2d)

⩾
d

1− 2d

g− f

(f− 4d)(g− 4d)

⇐⇒ f2 + fg+ g2 − 2d(g+ f)

f2g2
⩾

d

(1− d)(1− 2d)

f− 2d

f− 4d

g− 2d

g− 4d
.

We will lower bound and upper bound the left hand side and right hand side

respectively:

d

(1− d)(1− 2d)

f− 2d

f− 4d

g− 2d

g− 4d
⩽

d

(1− d)(1− 2d)

(1− 3d)2

(1− 5d)2

=
d

(1− d)(1− 2d)

(
1+

2d

1− 5d

)2
,

f2 + fg+ g2 − 2d(g+ f)

f2g2
⩾
f2 + fg+ g2 − 2d(g+ f)

f2

= 1+
g

f
+
(g
f

)2
− 2d

(
g

f2
+
1

f

)
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⩾ 3− 2d

(
1

(1− d)2
+

1

1− d

)
,

where we used f2 + fg+ g2 − 2d(g+ f) > 0 for the second inequality.

Note that the lower bound is monotonically decreasing in d and the upper bound is

monotonically increasing in d. Hence,

f2 + fg+ g2 − 2d(g+ f)

f2g2
−

d

(1− d)(1− 2d)

f− 2d

f− 4d

g− 2d

g− 4d

⩾ 3− 2d

(
1

(1− d)2
+

1

1− d

)
−

d

(1− d)(1− 2d)

(
1+

2d

1− 5d

)2
⩾ 3−

8

25

((
25

21

)2
+
25

21

)
−
4

21

25

17

(
1+

8

5

)2
(d ⩽ x∗ < 4/25)

⩾
2039

7497

> 0.

Thus, ζ is monotonically decreasing, meaning that ψ3 is monotonically increasing.

Altogether, we therefore have thatφ ′
, which is up to a positive constant Ŵ ′

5, is indeed

monotonically decreasing in f for fixed d ∈ [0, x∗]. It remains to show that φ ′(1) ⩾ 0:

−ψ1(1) = −
d

1− 2d

1

(1− 4d)2
,

−ψ2(1) = −
d

(1− 2d)2
1

1− 4d
,

−ψ3(1) =
1

1− 4d

(
1− d

1− 2d
−

d

1− 2d

1

1− 4d

)
,

φ ′(1) =
1

(1− 2d)(1− 4d)

(
(1− d) − d

(
1

1− 2d
+

2

1− 4d

))
=

1

(1− 2d)2(1− 4d)2
((1− d)(1− 2d)(1− 4d) − d ((1− 4d) + 2(1− 2d)))

=
−8d3 + 22d2 − 10d+ 1

(1− 2d)2(1− 4d)2

⩾ 0. (Prop. 4.28)

This completes the proof.

Remark 4.33. Though this approach is inherently ineffective to resolve an asymptotic

version of Conjecture 1.6, Delcourt and Postle suspect that the same is true for their

approach in resolving Conjecture 2.17: Even with a more detailed analysis where

additional global constraints on the densities are added, Delcourt and Postle suggest

that ultimately a non-uniform distribution of each pair’s demand among the cliques will

prove necessary for further progress.



§ 5. CONCLUDING REMARKS

In this thesis, we gave a detailed overview and provided proof sketches to Lee’s results

in [36] and related the problem to existing problems in combinatorics. Furthermore,

we quantitatively improved Lee’s main result, Theorem 1.4, by providing a better

upper bound on θ∗
STS

in Theorem 4.1, resulting in Theorem 1.8. Still, the resolution of

Conjecture 1.6 seems out of reach.

5.1 MOVING TOWARDS CONJECTURE 1.6

5.1.1 The conjectured value of θ∗
STS

The obvious way on making progress is of course showing that θ∗
STS
⩽ 3/4. Together

with the (transversal version of) Theorem 3.6, this would at least resolve the asymptotic

version of Conjecture 1.6.

In fact, during the study of the problem, Lee originally conjectured that θ
STS

= 2/3
and now believes that θ∗

STS
= 2/3.

Conjecture 5.1 (Lee 2023, [35]). θ∗
STS

= 2/3.

This is motivated by the following natural construction:

Lemma 5.2. Consider the 3-uniform hypergraph H = (V, E) on n ⩾ 5 vertices which is

constructed as follows: Take an equitable
1

partition V1 ·∪V2 ·∪V3 of V and set

E = V(3) \
{
e ∈ V(3) : |e ∩ V1| = |e ∩ V2| = |e ∩ V3| = 1

}
.

Then δ2(H) ⩾ 2n/3− 8/3 and H doesn’t contain a fractional Steiner triple system.

Proof. Since the partition is equitable, we have for all i ∈ [3]

n

3
−
2

3
⩽ |Vi| ⩽

n

3
+
2

3
.

Furthermore, by construction, it follows that the codegree is smallest if the vertices

are taken from two different parts. Hence, we get

δ2(H) = (|V |− 2) − max

i∈[3]
|Vi| ⩾

2n

3
−
8

3
.

It remains to show that H doesn’t contain a fractional Steiner triple system: Assume

that φ is a fractional Steiner triple system in H. By definition, we have

3 ∥φ∥1 =
∑

e∈E(H)

∑
p∈E(∂H): p⊆e

φ(e) =
∑

p∈E(∂H)

deg
φ(p) =

∑
p∈E(∂H)

1 =

(
n

2

)
,

1
Meaning the size of any two partition classes differ by at most by one.
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where we have used that every edge covers exactly 3 pairs and that ∂H is complete.

For concreteness, let ni = |Vi| for i ∈ [3]. W.l.o.g. we have n1 ⩽ n2 ⩽ n3. Since

V1 ·∪V2 ·∪V3 is an equitable partition, it follows that

(n1, n2, n3) =


(k− 1, k, k), n = 3k− 1

(k, k, k), n = 3k

(k, k, k+ 1), n = 3k+ 1,

where k ∈ N is the unique integer with |n− 3k| ⩽ 1.
Now, observe that any edge in H covers at least one pair in V

(2)
1 ∪ V(2)

2 ∪ V(2)
3 since

triples intersecting all the partition classes are not in E(H). In particular, every edge’s

weight contributes to the (weighted) codegree of at least one such pair, hence

∥φ∥1 ⩽
∑

p∈V(2)
1 ∪V(2)

2 ∪V(2)
3

deg
φ(p) =

3∑
i=1

(
ni
2

)

=


(k−1)(k−2)

2 + 2 · k(k−1)2 , n = 3k− 1

3 · k(k−1)2 , n = 3k

2 · k(k−1)2 +
(k+1)k
2 , n = 3k+ 1

 =


(3k−2)(3k−3)

6 , n = 3k− 1

3k(3k−3)
6 , n = 3k

3k(3k−1)
6 , n = 3k+ 1


<


(3k−1)(3k−2)

6 , n = 3k− 1

3k(3k−1)
6 , n = 3k

(3k+1)3k
6 , n = 3k+ 1

 =
1

3

(
n

2

)
. �

Therefore, H does not contain a fractional Steiner triple system.

Corollary 5.3. θ∗
STS
⩾ θf

STS
(0) ⩾ 2/3.

Remark 5.4. Note that, in contrast to the construction given in Lemma 1.7, our argument

for why H doesn’t contain a Steiner triple system relies on a space barrier: In some

sense, there is not enough space for the edges to accommodate the demand of each pair.

Furthermore, it is important to emphasize that the construction in Lemma 5.2 works for

any n ⩾ 5. Meanwhile, to construct the hypergraph as in Lemma 1.7, one fundamentally

requires n being odd.

Since the construction given in Lemma 5.2 relies on a space barrier, which is more

“robust” than a parity barrier, and works for arbitrary n ⩾ 5, Conjecture 5.1 seems at

least reasonable. Similar conjectures involving the minimum codegree threshold of

containing a partial Steiner triple system covering all but at most o(n2) pairs are also

plausible.

One can also verify by hand that the construction given in Lemma 1.7 contains

fractional Steiner triple systems, see Appendix A, while the construction given in

Lemma 5.2 provably doesn’t.
2

This is in stark contrast to the Nash-Williams conjecture

where it is known that the minimum degree threshold for a fractional K3-decomposition

is at least 3/4, see the concluding remarks of [50].

Interestingly enough, the construction given in Lemma 5.2 (with some added parity

requirements) is provably optimal if we want to find odd Steiner systems, see Lemma 5.17.

2
A program to compute fractional Steiner triple systems for small instances of that construction can also

be found in Section C.2.
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5.1.2 Coregular hypergraphs

Another fruitful step towards resolving Conjecture 1.6 may be to consider hypergraphs

with the following property:

Definition 5.5 ((δ, ρ)-coregular). Let δ ∈ [0, 1] and ρ > 0. We call a 3-uniform hypergraph

H (δ, ρ)-coregular if deg(u, v) ∈ (δ± ρ) · v(H) holds for all distinct u, v ∈ V(H).

In other words, H is coregular precisely when Haux is pseudorandom in the sense of

Pippenger-Spencer. Restricting to these hypergraphs should make the problem easier as

applying Pippenger-Spencer-type results on Haux already yields partial Steiner systems

that miss only o(n2) many edges. Hence, it seems reasonable that one could bypass the

usage of θ∗
STS

in the cover down step, resolving the asymptotic version of Conjecture 1.6

in this special case.

We also note that coregularity, while as far as we know not considered before, is a fairly

natural thing to consider. Indeed, one can proceed similarly to the proof of Lemma 5.7

to show for any constant p ∈ [0, 1] and any ε > 0 that G(3)(n, p) is (p, ε)-coregular with

high probability.

Additionally, the construction in Lemma 1.7 is (3/4, o(1))-coregular. Similarly, by

deleting the edges completely contained in one of the Vi’s, one obtains from the con-

struction in Lemma 5.2 a (2/3, o(1))-coregular hypergraph that, by the same, reasoning,

contains no fractional Steiner triple system. Hence, Conjecture 5.1 restricted to coregular

hypergraphs can also be considered. In particular, even if Conjecture 1.6 or Conjecture 5.1

would turn out to be wrong, it would be interesting to consider whether the constructions

at hand are at least the extremal constructions for the coregular case.

Consequently, we may define the codegree threshold for Steiner triple systems as follows:

Definition 5.6 (θco

STS
). Let θco

STS
be the infimum over all δ ∈ [0, 1] for which the following

holds: There exist ρ > 0 and n0 ∈ N such that for all 3-uniform, (δ, ρ)-coregular

hypergraphs H on n ⩾ n0 vertices with n ≡ 1, 3 (mod 6) contain a Steiner triple system.

We will refer to θco

STS
as the codegree threshold (for Steiner triple systems).

By definition and Theorem 1.8, we have that θco

STS
⩽ θ

STS
< 1. However, a priori, it

is not obvious why θco

STS
should act like a threshold despite the coregularity condition.

So, let us briefly talk about why calling θco

STS
a threshold is justified: For θ ∈ R to be a

threshold for some property P, we would expect that at θ the behaviour of whether P

holds drastically changes, e.g. that for every (sensible) value smaller than θ P does not

hold and for every (sensible) value greater than θ P holds. For this, we first show that a

large coregular hypergraph always contains a coregular hypergraph of smaller density.

Lemma 5.7. For every 0 < δ ′ < δ ⩽ 1 and δ > ρ > 0 there exists n0 ∈ N such that the

following holds: If H is a 3-uniform, (δ, ρ)-coregular hypergraph on n ⩾ n0 vertices,

then there exists a spanning 3-uniform, (δ ′, 2ρ)-coregular subhypergraph H ′ ⊆ H.

Proof. Let H be as given in the lemma. Let p = δ ′/δ ∈ (0, 1) and let H ′ = Hp be the

random sparsification of H. In other words, H ′
is the random hypergraph obtained by

independently adding an edge from Hwith probability p. Fix distinct u, v ∈ V(H). We

have that

E
[
degH ′(u, v)

]
= p · degH(u, v) ∈ (δ ′ ± p · ρ)n ⊆ (δ ′ ± ρ)n.
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Applying Theorem B.1, we obtain

P
(
degH ′(u, v) ̸∈ (δ ′ ± 2ρ)n

)
⩽ P

(∣∣
degH ′(u, v) −E

[
degH ′(u, v)

]∣∣ ⩾ ρn)
⩽ P

(∣∣
degH ′(u, v) −E

[
degH ′(u, v)

]∣∣ ⩾ ρE [degH ′(u, v)
])

⩽ 2 exp

(
−
ρ2

3
E
[
degH ′(u, v)

])
⩽ 2 exp

(
−
(δ− ρ)ρ2p

3
· n
)
.

Hence, via a simple union bound we get that

P

(
∃uv ∈ V(H)(2) : degH ′(u, v) ̸∈ (δ ′ ± 2ρ)n

)
⩽ 2

(
n

2

)
exp

(
−
(δ− ρ)ρ2p

3
· n
)

−→ 0

as n −→ ∞. Therefore, every pair has codegree (δ ′ ± 2ρ)n in H ′
asymptotically almost

surely. In particular, there must exist a subhypergraph H ′ ⊆ Hwith this property.

Remark 5.8. We remark that the proof goes through as long as the deviation of the

codegree is ω(
√
n · log(n)). Hence, if a deviation in the o(n)-regime is not strong

enough, one could consider stricter conditions on the range of codegrees.

Corollary 5.9. θco

STS
is a threshold in the following sense: For all θco

STS
< α ⩽ 1we have that

there exist ρ > 0 and n0 ∈ N such that every 3-uniform, (α, ρ)-coregular hypergraphs H

on n ⩾ n0 vertices with n ≡ 1, 3 (mod 6) contains a Steiner triple system.

Proof. Call α ∈ [0, 1] good if it satisfies the properties from the statement. It suffices

to show that if 0 < α < β ⩽ 1 and α is good, then β is good as well. For the sake of

contradiction, assume that there are some 0 < α < β ⩽ 1 for which the converse is

true. In particular, for every ρ > 0 there exist infinitely many 3-uniform, (β, ρ)-coregular

hypergraphs H on n ∈ N vertices with n ≡ 1, 3 (mod 6) and H not containing a Steiner

triple system.

Let n0 ∈ N and ρ ∈ (0, α) be the witness that α is good. Since β is not good, there

exist infinitely many 3-uniform, (β, ρ/2)-coregular hypergraphs H on n ⩾ n0 vertices

with n ≡ 1, 3 (mod 6) and H not containing a Steiner triple system. However, applying

Lemma 5.7 for H with n sufficiently large, we get that H contains a spanning 3-uniform,

(α, ρ)-coregular hypergraph H ′
which, by our choice of n0 and ρ, contains a Steiner

triple system. �

Corollary 5.10. 3/4 ⩽ θco

STS
⩽ θ

STS
.

Lastly, we note that, even without bypassing θ∗
STS

(or the coregular analogue thereof),

it should be possible to adapt Lee’s approach for a better bound on θco

STS
. Indeed, as the

probabilistic inequalities used are usually concentration inequalities with bounds in both

directions such as Theorem B.1, this should be doable. Furthermore, using the approach

in Chapter 4, it should be possible to get a bound on the coregular analogue of θ∗
STS

that

is arbitrarily close to 5/6 since the deviation of the codegrees can be made arbitrarily

close.
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5.1.3 A new absorption paradigm?

Recently, Delcourt and Postle gave a third proof of the existence conjecture, see [7]. The

proof involves what they introduce as refined absorption, a novel method that should have

the best qualities of the previously used methods ([27, 17]): It is a one-step absorption,

yet purely combinatorial.

With the recency of the paper, it is hard to make any predictions as to how widely

the method will be adapted. Nevertheless, it would definitely be worth a try to consider

this method for Conjecture 1.6.

5.2 VARIATIONS AND STRENGTHENINGS

5.2.1 Odd Steiner systems

Similarly to how people in additive combinatorics consider problems originally studied

over the natural numbers such as in Roth’s theorem (see [46]) also over finite fields /

finite vector spaces, we propose as a “toy model” what we will call odd Steiner systems.
Essentially, the concept of odd Steiner systems arises from an F2-relaxation: What if

instead of every r-set being covered by exactly one edge, we require it to be covered by

an odd number of edges?

In the same way that (t-)intersecting families are generalized to L-intersecting families

in extremal set theory, where t ∈ N and L ⊆ N0, we thus may generalize combinatorial

designs in the following way:

Definition 5.11 ((n, q, r, L)-design). Let 1 ⩽ r < q ⩽ n and L ⊆ N0. We say that an

n-vertex, q-uniform hypergraph H is an (n, q, r, L)-design if degH(f) ∈ L for all f ∈ V(r)
.

Remark 5.12. Note that (n, q, r, λ)-designs are the same as (n, q, r, {λ})-designs. In such

cases, we will follow the usual convention and omit the set brackets.

Definition 5.13 (Odd Steiner systems). Let n ∈ N be given. We say that an n-vertex,

q-uniform hypergraphH is an odd (n, q, r)-Steiner system if it is an (n, q, r, 2N− 1)-design.

If q = 3 and r = 2, then we will also call H an odd Steiner triple system.

Unlike with the usual Steiner triple systems, the question concerning existence is

fairly straightforward. Indeed, we have the following sufficient parity condition.

Lemma 5.14. Let n ⩾ q ⩾ 2. There exists an odd (n, q, q− 1)-Steiner system of order n

if and only if n ≡ q (mod 2).

Proof. We first show that the parity condition is necessary: Let S = (V, E) be an arbitrary

odd (n, q, q− 1)-Steiner system. By definition, we have deg(p) ≡ 1 (mod 2) for all pairs

p ∈ V(q−1)
. Now, let f ∈ V(q−2)

be arbitrary.

We wish to double count the sum of (q− 1)-degrees for all pairs containing f. On the

one hand, this obviously equals ∑
u∈V\f

deg({u} ∪ f).

On the other hand, as every hyperedge {u,w} ·∪ f ∈ E incident to fmust contribute to

the codegrees of {u} ·∪ f and {w} ·∪ f, it follows that this sum also equals∑
e∈E : f⊆e

2.
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Equating those two expressions in modulo 2, we get

0 ≡
∑
u∈V\f

deg({u} ∪ f) ≡ |V \ f| ≡ n− (q− 2) ≡ n− q (mod 2)

In particular, n ≡ q (mod 2). On the other hand, K
(q)
n is an odd Steiner triple system

for every n ≡ q (mod 2), hence the parity condition is sufficient.

As in the case of Steiner triple systems, we are interested in the minimum codegree

threshold for odd Steiner triple systems, or more generally the minimum (q− 1)-degree

threshold for odd (n, q, q − 1)-Steiner systems. By generalizing the construction of

Lemma 5.2 with some added parity requirements, one obtains that the threshold is at

least (q− 1)/q, this time with a parity argument:

Proposition 5.15. Let n ⩾ q ⩾ 2, n ≡ q (mod 2), and consider the hypergraph Hwith

vertex set V = V1 ·∪ . . . ·∪Vq, where all the parts Vi are odd and pairwise differ at most

by two in their size, and edge set E = V(q) \
{
e ∈ V(q) : |e ∩ V1| = · · · = |e ∩ Vq| = 1

}
.

Then δq−1(H) ⩾ (q− 1)n/q−O(1) and H contains no odd (n, q, q− 1)-Steiner system.

Proof. δq−1(H) ⩾ (q − 1)n/q − O(1) follows directly from the fact that all Vi’s have

roughly equal size. Hence, let us focus on the latter claim: Assume that S ⊆ H is an odd

(n, q, q− 1). Consider the sum

M =
∑

(v1,...,vq−1)∈V1×···×Vq−1

degS(v1, . . . , vq−1).

Since each of those (q− 1)-degrees is odd, we get

M ≡ |V1| |V2| · · ·
∣∣Vq−1∣∣ ≡ 1 (mod 2).

On the other hand, as we remove the “partite edges” from H, every edge e ∈ E(S)
covering some (v1, . . . , vq−1) ∈ V1 × · · · × Vq−1 must by pigeonhole principle satisfy

|e ∩ Vi| = 2 for a unique i ∈ [q−1]. Let v ′i ∈ (e∩Vi)\{vi}. It follows that emust contribute

toM in precisely two tuples, namely (v1, . . . , vi, . . . , vq−1), (v1, . . . , v
′
i, . . . , vq−1). Since

this is the case for any edge e that contributes to M, we must have that M is even, a

contradiction.

Remark 5.16. Apart from q = 3, which corresponds to the construction in Lemma

5.2 with added parity requirements, the case q = 2 is also familiar: The construction

yields two disjoint, odd cliques of nearly the same size, one of the standard extremal

constructions for Dirac’s theorem for matchings.

Hence, we observe that for q = 2, the minimum degree threshold for the usual

variant – a perfect matching – and the odd variant – an odd matching – coincide. The

same is asymptotically true if we consider the minimum codegree threshold for perfect

matchings / odd perfect matchings in 3-uniform hypergraphs, see Appendix D. As we

will see this is not the case for q = 3 and there is a in fact a gap.

The following lemma was proven together with Schacht and Lee:

Lemma 5.17. Let H be a 3-uniform hypergraph on n ⩾ 3 vertices with n ≡ 1 (mod 2)
and δ2(H) > 2n/3. Then H contains an odd Steiner triple system.
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Proof. With respect to a subhypergraph F ⊆ H, we call a pair p ∈ V(H)(2) even if

degF(p) ≡ 0 (mod 2).
Let F ⊆ H be a subhypergraph of Hminimizing the number of even pairs. Assume

that the number of even pairs is greater than zero, otherwise we are done. We first

observe that F is P2-free: Assume that uvw form a P2 in the graph induced by the even

pairs. Due to the codegree condition, we have

|NH(u, v) ∩NH(u,w) ∩NH(v,w)| ⩾ 3δ2(H) − 2n > 0,

meaning that there exists some x ∈ V(H) such that xuv, xuw, xvw ∈ E(H). Now consider

the hypergraph F ′ = (V(H), E(F) △ {xuv, xuw, xvw}) ⊆ E(H). It can be checked that uv

and vw are now odd, degF ′(u,w) ≡ degF(u,w) + 1 (mod 2) and degF ′(p) ≡ degF(p)
(mod 2) for all other pairs p. Hence, we decreased the number of even pairs by at least

one. �

This means that the even pairs induce a matching. Let uv be one of the even pairs.

We know by an elementary double counting argument that

degF(u) =

∑
w∈V(H)\{u} degF(u,w)

2
.

In particular,

∑
w∈V(H)\{u} degF(u,w) must be even. However, as u is incident to

precisely one even pair, we see that∑
w∈V(H)\{u}

degF(u,w) = degF(u, v) +
∑

w∈V(H)\{u,v}

degF(u,w)

≡ 0+ |V(H) \ {u, v}|

≡ n− 2

≡ 1 (mod 2). �

Hence, there are no even pairs in F and F is the desired odd Steiner triple system.

A similar proof due to Lee works in the 4-uniform case, but from then on, no progress

has been made. We end this subsection formally stating the conjecture:

Conjecture 5.18. For every q ⩾ 2 there exists C ⩾ 0 such that for all sufficiently large n

with n ≡ q (mod 2) the following holds: LetH be a q-uniform hypergraph on n-vertices

with δq−1(H) ⩾ (q− 1)n/q+ C. Then H contains an odd (n, q, q− 1)-Steiner system.

5.2.2 Concerning uniqueness and robust versions of Conjecture 1.6

After the resolution of Conjecture 1.6 and 5.1, it would be natural to ask the following:

Question 5.19. Are the lower bound constructions given in Lemma 1.7 and Lemma 5.2

for θ
STS

and θ∗
STS

essentially unique?

Maybe it would even be possible to establish some type of stability result for both

of them, though it seems unlikely for the former given the fact that the construction in

Lemma 1.7 relies on a parity barrier.

Another interesting direction would be to consider robust versions of Conjecture 1.6.

For that, we need to take a small detour: While the conjecture considers under what

density (measured in the minimum codegree) a 3-uniform hypergraph always contains a
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Steiner triple system, it is just as natural to ask at what density (measured in the fraction

of edges present) a “typical” 3-uniform hypergraph will contain a Steiner triple system.

More formally, we could consider the threshold probability for a Steiner triple system in

G(3)(n, p) for n ≡ 1, 3 (mod 6). It was conjectured by Simkin in 2017 (see [48]) and

independently by Keevash in his 2018 ICM talk that the threshold probability should

be Θ(log(n)/n). After the resolution of the Kahn-Kalai conjecture (see [39]), a series of

results ([47, 25]) towards the resolution of that conjecture were published until Jain and

Pham in [20] and Keevash in [28] independently confirmed the conjecture.

Hence, after the resolution of Conjecture 1.6, it would be interesting to combine it

with the result by Jain and Pham, and Keevash. Concretely, one may show one of the

following conjectures:

Conjecture 5.20. There exist C,C ′ > 0 such that for all n ∈ N with n ≡ 1, 3 (mod 6) and

p ⩾ C ′ (log(n)/n) the following holds: Let H be a 3-uniform hypergraph on n vertices

such that δ2(H) ⩾ 3n/4+C. Then the random sparsificationHp, where we keep each edge

in E(H) with probability p independent of the outcome for the other edges, contains a

Steiner triple system with high probability.

Conjecture 5.21 (Transversal version of Conjecture 5.20). There exist C,C ′ > 0 such that

for all n ∈ N with n ≡ 1, 3 (mod 6) and p ⩾ C ′ (log(n)/n) the following holds: Let

H =
{
H1, . . . , Hn(n−1)/6

}
be a family of 3-uniform hypergraph with vertex set [n] such

that δ2(H
i) ⩾ 3n/4 + C for all i ∈ [n(n − 1)/6]. Then there exists a transversal Steiner

triple system for H1p, . . . , H
n(n−1)/6
p with high probability.

Such results have already been established for other spanning structures in graphs

where both the threshold probability and minimum (co-)degree threshold were known,

see for example [33, 3, 23, 1].

In fact, a general framework for establishing such robust thresholds was published

by a subset of the authors involved in determining the threshold probability of Steiner

triple systems, see [40]. Thus, if Conjecture 1.6 has been resolved, Conjecture 5.20 and

Conjecture 5.21 should be within reach.

5.2.3 A generalization of Conjecture 1.6 to higher uniformities

Another obvious, though daunting problem would of course be to consider higher

uniformities. Indeed, with the existence conjecture solved barely a decade ago, estimating

thresholds in the way we did for Steiner triple systems seems out of reach.
3

However,

given our usage of Fact 2.7 in the proof of Theorem 1.4 and the (supposed) extremal

constructions for the perfect matching case and the Steiner triple system case, we may

propose the following conjecture:

Conjecture 5.22. For any ε > 0, there exists n0 = n0(ε) such that the following holds for

every n ⩾ n0 such that (n, q, q− 1, 1) satisfy the divisibility conditions posed in Fact 2.4:

Let H be a q-uniform hypergraph on n vertices. If the minimum (q− 1)-degree of H is

at least (
2q− 3

2q− 2
+ ε

)
n,

then H contains an (n, q, q− 1, 1)-Steiner system.

3
Recall that, unlike with general designs, the existence of Steiner triple systems was already resolved in

the 1800s, see Lemma 2.6.
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Note how this conjecture generalizes both Dirac’s theorem for matchings and Con-

jecture 1.6. Apart from this numerical agreement, there are also some other reasons in

favor of this conjecture.

For perfect matchings, we know two extremal constructions, one of which is the

disjoint union of odd cliques that are of (roughly) equal size. In other words, the vertices

get partitioned into two odd partition classes in a balanced way and forbidding exactly

the edges that go across the two partition classes. This seems very reminiscent to the

part of the Construction in Lemma 1.7 where we have three odd partition classes, also

(roughly) of equal size, and forbid the edges going across. However, in addition to the

odd partition classes, we have one more even partition class in comparison to the perfect

matching case.

Hence, it seems plausible that the extremal construction for (n, q, q − 1)-Steiner

systems should involve 2q− 2 partition classes of roughly equal size, q of which are of

odd size and the remaining q − 2 classes of even size. Additionally, the edges going

across all odd classes should be forbidden.

5.2.4 Getting the minimum degree involved

Lastly, while a minimum degree condition alone can’t induce the existence of Steiner

triple systems, one may consider the situation where we additionally have some mild

minimum codegree conditions:

Question 5.23. Does there exist a constant α ∈ [0, 1] such that for all ε > 0 the following

is true for sufficiently large n satisfying n ≡ 1, 3 (mod 6): IfH is a 3-uniform hypergraph

on n vertices such that δ1(H) ⩾ (α+ ε)
(
n−1
2

)
and δ2(H) ⩾ ε(n− 2), then H contains a

Steiner triple system? If so, what is the infimum over all such α ∈ [0, 1]?

Remark 5.24. We note that if such an α exist, it must be at least 7/9. Indeed, it is easy to

see that the construction given in Lemma 5.2 has a minimum degree of at least(
n− 1

2

)
−

(
n

3
+
2

3

)2
=
7

9

(
n− 1

2

)
+ o(n2).
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A EXPLICIT FRACTIONAL STEINER TRIPLE SYSTEMS

In this chapter, we give some explicit fractional Steiner triple systems in the construction

described in Lemma 1.7.

Proposition A.1. Let H be the hypergraph constructed in Lemma 1.7 where we only

require n ⩾ 21 to be odd. Then H contains a fractional Steiner triple system.

Proof. Let ni = |Vi| for all i ∈ {0, 1, 2, 3}. Since the sizes are chosen to be as balanced as

possible, while satisfying the parity conditions, we either have

• n1 = n2 = n3 and |n0 − n1| ⩽ 1, or

• maxi∈[3] ni − minj∈[3] nj = 2 and n0 = minj∈[3] nj + 1.

We will define an explicit weighting in either case.

If the first case holds, let l = n0,m = n1 and let ψ : E(H) −→ [0, 1] be defined by

ψ(e) =



1
3m , e ∈ E0
3m−l+1
6m2 , e ∈ E1

(3m−l+1)l−6m
6m(m−1)(m−2) , e ∈ E2
6m2−(3m−l+1)l
12m2(m−1)

, e ∈ E3.

One can verify that since l ⩾ 5 and |l−m| ⩽ 1

3m− l+ 1 ⩾ 2m,

(3l− 6)m− l2 + 1 ⩾ (3l− 6)(l− 1) − l2 + 1

⩾ (2l− 9)l+ 7

> 0,

6m2 − (3m− l+ 1)l ⩾ 6(l− 1)2 − (3l+ 4)l

⩾ 3l2 − 16l+ 6

> 0,

so ψ is non-negative. It suffices to show that ψ assigns each pair a weight of one: Let

p ∈ V(H)(2) be a pair. If p ⊆ V0, then p is exactly covered by the edges in E0, more

specifically 3m of them. Hence, we get that

deg
ψ(p) =

|V1 ∪ V2 ∪ V3|
3m

= 1.
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If |p ∩ V0| = 1, meaning that |p ∩ Vi| = 1 for some i ∈ [3], then since triples e with

|e ∩ V0| = 1 and |e ∩ Vi| = 2 are not in E(H), the edges covering p are in E0 or E1. There

are exactly l− 1 edges of the first type and 2m of the second type, giving us

deg
ψ(p) =

l− 1

3m
+ 2m · 3m− l+ 1

6m2
=
l− 1+ (3m− l+ 1)

3m
= 1.

If |p ∩ Vi| =
∣∣p ∩ Vj∣∣ = 1 for some 1 ⩽ i < j ⩽ 3, then the edges covering p are in E1

or E3 as triples going across V1, V2, and V3 are not in E(H). There are precisely l of the

first type and 2(m− 1) of the second type. Hence,

deg
ψ(p) = l · 3m− l+ 1

6m2
+ 2(m− 1) · 6m

2 − (3m− l+ 1)l

12m2(m− 1)

=
(3m− l+ 1)l+ (6m2 − (3m− l+ 1)l)

6m2

= 1.

Lastly, if p ⊆ Vi for some i ∈ [3], then the edges covering p are in E3 or E2 since

triples ewith |e ∩ V0| = 1 and |e ∩ Vi| = 2 are not in E(H). There are exactly 2m edges of

the first type andm− 2 edges of the second type. Hence,

deg
ψ(p) = (m− 2) · (3m− l+ 1)l− 6m

6m(m− 1)(m− 2)
+ 2m · 6m

2 − (3m− l+ 1)l

12m2(m− 1)

=
(3m− l+ 1)l− 6m

6m(m− 1)
+
6m2 − (3m− l+ 1)l

6m(m− 1)

= 1.

If the second case holds, letm = n0 and w.l.o.g. let n1 = m− 1 and n3 = m+ 1. We

make a case distinction on n2 ∈ {n1, n3}.

If n2 = m− 1, let ψ : E(H) −→ [0, 1] be defined by

ψ(e) =



m−2
3(m−1)2

, e ∈ E0 and e ∩ V3 = ∅
1

3(m−1) , e ∈ E0 and e ∩ V3 ̸= ∅
m−2

3(m−1)2
, e ∈ E1 and e ∩ V3 = ∅

1
3(m−1) , e ∈ E1 and e ∩ V3 ̸= ∅
2m3−13m2+24m−15
6(m−1)2(m−2)(m−3)

, e ∈ E2 and e ∩ V3 = ∅
m

3(m−1)2
, e ∈ E2 and e ∩ V3 ̸= ∅

2m2−4m+3
6(m−1)2(m−2)

, e ∈ E3 and e ∩ V3 = ∅
2m−3
6(m−1)2

, e ∈ E3 and e ∩ V3 ̸= ∅.

Once again, one can verify that for n ⩾ 21 ψ is non-negative. So, it suffices to show that

ψ assigns each pair a weight of one: Let p ∈ V(H)(2) be a pair. If p ⊆ V0, then p is exactly

covered by the edges in E0, more specifically n1 + n2 + n3 of them. Hence, we get

deg
ψ(p) = 2(m− 1) · m− 2

3(m− 1)2
+ (m+ 1) · 1

3(m− 1)
=
2(m− 2) + (m+ 1)

3(m− 1)
= 1.
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If |p ∩ V0| = 1, meaning that |p ∩ Vi| = 1 for some i ∈ [3], then since triples e with

|e ∩ V0| = 1 and |e ∩ Vi| = 2 are not in E(H), the edges covering p are in E0 or E1. There

are exactly n0 − 1 = m− 1 edges of the first type and nj + nk of the second type where

{j, k} = [3] \ {i}. This gives us

deg
ψ(p) = (m− 1) · m− 2

3(m− 1)2
+ (m− 1) · m− 2

3(m− 1)2
+ (m+ 1) · 1

3(m− 1)

=
m− 2

3(m− 1)
+

m− 2

3(m− 1)
+

m+ 1

3(m− 1)

= 1,

deg
ψ(p) = (m− 1) · 1

3(m− 1)
+ 2(m− 1) · 1

3(m− 1)

= 1

for the case i ̸= 3 and i = 3 respectively.

If |p ∩ Vi| =
∣∣p ∩ Vj∣∣ = 1 for some 1 ⩽ i < j ⩽ 3, then the edges covering p are in E1

or E3 as triples going across V1, V2, and V3 are not in E(H). There are precisely n0 = m
of the first type and (ni − 1) + (nj − 1) of the second type. Hence,

deg
ψ(p) = m · m− 2

3(m− 1)2
+ 2(m− 2) · 2m2 − 4m+ 3

6(m− 1)2(m− 2)

=
m2 − 2m

3(m− 1)2
+
2m2 − 4m+ 3

3(m− 1)2

= 1,

deg
ψ(p) = m · 1

3(m− 1)
+ 2(m− 1) · 2m− 3

6(m− 1)2

=
m

3(m− 1)
+
2m− 3

3(m− 1)

= 1

for the case i ̸= 3 and i = 3 respectively.

Lastly, if p ⊆ Vi for some i ∈ [3], then the edges covering p are in E3 or E2 since

triples ewith |e ∩ V0| = 1 and |e ∩ Vi| = 2 are not in E(H). There are exactly nj + nk of

the first type where {j, k} = [3] \ {i} and ni − 2 edges of the second type. Hence, ψ(p)
equals

(m− 1) · 2m2 − 4m+ 3

6(m− 1)2(m− 2)
+ (m+ 1) · 2m− 3

6(m− 1)2
+
2m3 − 13m2 + 24m− 15

6(m− 1)2(m− 2)
= 1

for i ̸= 3 and for i = 3 we get

2(m− 1) · 2m− 3

6(m− 1)2
+ (m− 1) · m

3(m− 1)2
=

2m− 3

3(m− 1)
+

m

3(m− 1)
= 1.
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If n2 = m+ 1, let ψ : E(H) −→ [0, 1] be defined by

ψ(e) =



2
m(m+1) , e ∈ E0 and e ∩ V1 = ∅
m−4

m(m−1) , e ∈ E0 and e ∩ V1 ̸= ∅
m2−3m+4
m(m+1)2

, e ∈ E1 and e ∩ V1 = ∅
2

m(m+1) , e ∈ E1 and e ∩ V1 ̸= ∅
m2−2m+3

2m(m−1)(m+1) , e ∈ E2 and e ∩ V1 = ∅

0, e ∈ E2 and e ∩ V1 ̸= ∅
5m−3

2m(m+1)2
, e ∈ E3 and e ∩ V1 = ∅

1
2(m+1) , e ∈ E3 and e ∩ V1 ̸= ∅.

Once again, one can verify that for n ⩾ 21 ψ is non-negative. So, it suffices to show that

ψ assigns each pair a weight of one: Let p ∈ V(H)(2) be a pair. If p ⊆ V0, then p is exactly

covered by the edges in E0, more specifically n1 + n2 + n3 of them. Hence, we get

deg
ψ(p) = 2(m+ 1) · 2

m(m+ 1)
+ (m− 1) · m− 4

m(m− 1)

=
4

m
+
m− 4

m

If |p ∩ V0| = 1, meaning that |p ∩ Vi| = 1 for some i ∈ [3], then since triples e with

|e ∩ V0| = 1 and |e ∩ Vi| = 2 are not in E(H), the edges covering p are in E0 or E1. There

are exactly n0 − 1 = m− 1 edges of the first type and nj + nk of the second type where

{j, k} = [3] \ {i}. This gives us

deg
ψ(p) = (m− 1) · 2

m(m+ 1)
+ (m− 1) · 2

m(m+ 1)
+ (m+ 1) · m

2 − 3m+ 4

m(m+ 1)2

=
4(m− 1)

m(m+ 1)
+
m2 − 3m+ 4

m(m+ 1)

= 1,

deg
ψ(p) = (m− 1) · m− 4

m(m− 1)
+ 2(m+ 1) · 2

m(m+ 1)

=
m− 4

m
+
4

m

= 1

for the case i ̸= 1 and i = 1 respectively.

If |p ∩ Vi| =
∣∣p ∩ Vj∣∣ = 1 for some 1 ⩽ i < j ⩽ 3, then the edges covering p are in E1

or E3 as triples going across V1, V2, and V3 are not in E(H). There are precisely n0 = m
of the first type and (ni − 1) + (nj − 1) of the second type. Hence, we get

deg
ψ(p) = m · m

2 − 3m+ 4

m(m+ 1)2
+ 2m · 5m− 3

2m(m+ 1)2

=
m2 − 3m+ 4

(m+ 1)2
+
5m− 3

(m+ 1)2
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= 1,

deg
ψ(p) = m · 2

m(m+ 1)
+ 2(m− 1) · 1

2(m+ 1)

=
2

m+ 1
+
m− 1

m+ 1

= 1

for the case i ̸= 1 and i = 1 respectively.

Lastly, if p ⊆ Vi for some i ∈ [3], then the edges covering p are in E3 or E2 since

triples ewith |e ∩ V0| = 1 and |e ∩ Vi| = 2 are not in E(H). There are exactly nj + nk of

the first type where {j, k} = [3] \ {i} and ni − 2 edges of the second type. Hence, we get

deg
ψ(p) = (m+ 1) · 5m− 3

2m(m+ 1)2
+ (m− 1) · 1

2(m+ 1)
+ (m− 1) · m2 − 2m+ 3

2m(m− 1)(m+ 1)

=
5m− 3

2m(m+ 1)
+

m2 −m

2m(m+ 1)
+
m2 − 2m+ 3

2m(m+ 1)

= 1,

deg
ψ(p) = 2(m+ 1) · 1

2(m+ 1)

= 1

for i ̸= 1 and i = 1 respectively.

Hence, in all three cases, ψ is a fractional Steiner triple system in H.



B PROBABILISTIC INEQUALITIES

In this chapter, we briefly state some inequalities from probability theory.

Theorem B.1 (Two-sided Chernoff bound for binomial distributions, [21, Cor. 2.3]). Let

n ∈ N, p ∈ [0, 1]. If X ∼ Bin(n, p) and ε ∈ (0, 3/2], then

P (|X−E [X]| ⩾ εE [X]) ⩽ 2 exp

(
−
ε2

3
E [X]

)
.

Theorem B.2 (Two-sided Chernoff bound for hypergeometric distributions, [21, Thm.

2.10]). Let N ∈ N,m, n ∈ [N]. If X ∼ Hyp(N,m,n) and ε ∈ (0, 3/2], then

P (|X−E [X]| ⩾ εE [X]) ⩽ 2 exp

(
−
ε2

3
E [X]

)
,

where E [X] = mn/N.



C GUROBI IMPLEMENTATIONS

To verify results and allow for experimentation, we wrote code throughout the research

process of this thesis, some of which is attached here. All the scripts were written and

run using Python 3.8.10 and the Gurobi optimizer 10.0.3.

C.1 SOLVING (P3)

Below is an implementation of (P3) as defined above Corollary 4.23:

1 # Solving optimization program arising from Delcourt & Postle’s approach.
2

3 import gurobipy as gp
4 from gurobipy import GRB
5

6 # Create a new model
7 m = gp.Model("DelcourtPostle")
8

9 # Problem is non-convex, so we need to set "NonConvex" accordingly.
10 m.setParam(GRB.Param.NonConvex , 2)
11

12 # (1 - d) is the minimum codegree density.
13 # Setting d as follows, the computed objective stays below 1.
14 # This agrees with our theorem.
15 d = 0.1421
16

17 # Create variables with given lower and upper bounds.
18 e0 = m.addVar(lb=1.0-d, ub=1.0, name="e_0")
19 e = m.addVar(lb=1.0-d, ub=1.0, name="e")
20 f = m.addVar(lb=1.0-d, ub=1.0, name="f")
21 q0 = m.addVar(name="q_0")
22 q = m.addVar(name="q")
23 p = m.addVar(name="p")
24 r0 = m.addVar(lb=0.5, name="r_0")
25 r = m.addVar(lb=0, name="r")
26

27 # Auxiliary variables representing inverses,
28 # Gurobi doesn’t directly allow divisions.
29 e0_inv = m.addVar(name="e_0^-1")
30 e_inv = m.addVar(name="e^-1")
31 f_inv = m.addVar(name="f^-1")
32 q0_inv = m.addVar(name="q_0^-1")
33 q_inv = m.addVar(name="q^-1")
34 p_inv = m.addVar(name="p^-1")
35

36 # Auxiliary variables for nested terms,
37 # Gurobi doesn’t directly allow the product of three or more terms.
38 z0 = m.addVar(name="z_1 * (z_2 + z_3)")
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39 z1 = m.addVar(name="e_0 * r_0")
40 z2 = m.addVar(name="1 / q_0 * ((1 / e) - (1 / e_0)")
41 z3 = m.addVar(name="z_4 * z_5")
42 z4 = m.addVar(name="r / p")
43 z5 = m.addVar(name="((1 / e) - (1 / f)) / q + ((1 / e) - (1 / e_0)) / q_0")
44

45 # Additional constraints on the common co-neighborhood densities.
46 m.addConstr(q0 >= e0 + e - 1 - d)
47 m.addConstr(q0 <= e0)
48 m.addConstr(q >= e + f - 1 - d)
49 m.addConstr(q <= e)
50 m.addConstr(p >= q0 + q - e - d)
51 m.addConstr(p <= q0)
52 m.addConstr(r0 <= e0)
53 m.addConstr(r <= q0)
54

55 # Auxiliary constraints for inversion.
56 m.addConstr(e0_inv * e0 == 1)
57 m.addConstr(e_inv * e == 1)
58 m.addConstr(f_inv * f == 1)
59 m.addConstr(q0_inv * q0 == 1)
60 m.addConstr(q_inv * q == 1)
61 m.addConstr(p_inv * p == 1)
62

63 # Auxiliary constraints for nested terms inside the objective function.
64 # z0 will play the role of the objective function.
65 m.addConstr(z0 == z1 * (z2 + z3))
66 m.addConstr(z1 == e0 * r0)
67 m.addConstr(z2 == q0_inv * (e_inv - e0_inv))
68 m.addConstr(z3 == z4 * z5)
69 m.addConstr(z4 == r * p_inv)
70 m.addConstr(z5 == q_inv * (e_inv - f_inv) + q0_inv * (e_inv - e0_inv))
71

72 m.setObjective(z0, GRB.MAXIMIZE)
73

74 m.optimize()
75

76 # Prints out for every variable its value.
77 for v in m.getVars():
78 print(f"{v.VarName} {v.X:g}")
79

80 # Prints out the best objective obtained.
81 print(f"Obj: {m.ObjVal:g}")

C.2 COMPUTING FRACTIONAL STEINER TRIPLE SYSTEMS

To find fractional Steiner triple systems for the construction described in Lemma 1.7, we

may formulate the equivalent linear program. Following this approach, the following

Python script has been written:

1 import gurobipy as gp
2 from gurobipy import GRB
3 from itertools import chain, combinations , product
4 import math
5 import numpy as np
6

7 # See if Lee’s 3/4-construction contains a fractional STS.
8 # Short answer: It does (for small, reasonable instances).
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9

10 # Size of V_i in the ith entry.
11 # Here we have |V_0| = 6, |V_i| = 7 otherwise.
12 sizes = [6, 7, 7, 7]
13

14 # |V|
15 total = sum(sizes)
16

17 # Define the vertex classes with corresponding sizes.
18 v0 = range(sizes[0])
19 v1 = range(sum(sizes[:1]), sum(sizes[:2]))
20 v2 = range(sum(sizes[:2]), sum(sizes[:3]))
21 v3 = range(sum(sizes[:3]), sum(sizes[:4]))
22

23 edges = []
24

25 # Add edges of type E_0.
26 for (i, j), k in product(combinations(v0, 2), chain(v1, v2, v3)):
27 edges.append((i, j, k))
28

29 # Add edges of type E_1.
30 for i, j, k in product(v0, v1, v2):
31 edges.append((i, j, k))
32 for i, j, k in product(v0, v1, v3):
33 edges.append((i, j, k))
34 for i, j, k in product(v0, v2, v3):
35 edges.append((i, j, k))
36

37 # Add edges of type E_2.
38 for i, j, k in combinations(v1, 3):
39 edges.append((i, j, k))
40 for i, j, k in combinations(v2, 3):
41 edges.append((i, j, k))
42 for i, j, k in combinations(v3, 3):
43 edges.append((i, j, k))
44

45 # Add edges of type E_3.
46 for (i, j), k in product(combinations(v1, 2), v2):
47 edges.append((i, j, k))
48 for i, (j, k) in product(v1, combinations(v2, 2)):
49 edges.append((i, j, k))
50

51 for (i, j), k in product(combinations(v2, 2), v3):
52 edges.append((i, j, k))
53 for i, (j, k) in product(v2, combinations(v3, 2)):
54 edges.append((i, j, k))
55

56 for (i, j), k in product(combinations(v1, 2), v3):
57 edges.append((i, j, k))
58 for i, (j, k) in product(v1, combinations(v3, 2)):
59 edges.append((i, j, k))
60

61 # List of all pairs and total number of pairs.
62 pairs = combinations(range(total), 2)
63 total_pairs = math.comb(total, 2)
64

65 # Create incidence matrix A between pairs and edges.
66 # b corresponds to the desired weight of each pair, i.e. each entry is one.
67 A = np.zeros((total_pairs , len(edges)))
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68 b = np.ones((total_pairs , 1))
69 for j, pair in enumerate(pairs):
70 for k, hyper_edge in enumerate(edges):
71 if set(hyper_edge).issuperset(pair):
72 A[j][k] = 1
73

74 # Create new model.
75 # y takes non-negative real values since we deal with fractional STS.
76 # x takes on value of smallest weight.
77 m = gp.Model("LP")
78 y = m.addMVar(len(edges), vtype=GRB.CONTINUOUS , lb=0.0, name="weights")
79 x = m.addVar(vtype=GRB.CONTINUOUS , lb=0.0, name="min weight")
80

81 # Weight assigned to edges should induce that every pair has weight one.
82 m.addConstr(A @ y == b)
83 m.addConstr(x == gp.min_(y.tolist()))
84

85 # We set the objective to maximize the smallest weight.
86 # This forces structure into the fractional STS, which may be helpful.
87 # Can be turned off if we are only interested in a solution.
88 m.setObjective(x, GRB.MAXIMIZE)
89

90 m.optimize()
91

92 all_vars = m.getVars()
93 values = m.getAttr("X", all_vars)
94 names = m.getAttr("VarName", all_vars)
95

96 # Print for every edge with non-zero weight its weight.
97 it_edges = 0
98 for name, val in zip(names, values):
99 if name.startswith("weights"):

100 if val > 0:
101 print(’%s %g’ % (edges[it_edges], val))
102 it_edges += 1

Apart from the smallest, arguably degenerate cases, our program is able to find a

fractional Steiner triple system in small instances. From the computed fractional Steiner

triples, we were able to come up with the constructions in Proposition A.1. The cases

not covered by Proposition A.1 are listed in Table C.1. Overall, these findings support

Conjecture 5.1.

n (|V0| , |V1| , |V2| , |V3|) Does there exist a fractional Steiner triple system?

3 (0, 1, 1, 1) No.

5 (2, 1, 1, 1) No.

7 (2, 1, 1, 3) No.

9 (2, 1, 3, 3) Yes.

11 (2, 3, 3, 3) No.

13 (4, 3, 3, 3) Yes.

15 (4, 3, 3, 5) Yes.

17 (4, 3, 5, 5) Yes.

19 (4, 5, 5, 5) Yes.

21 (6, 5, 5, 5) Yes.

Table C.1: Existence of fractional Steiner triple systems for all odd nwith n ⩽ 21



D THRESHOLD FOR ODD PERFECT MATCHINGS

In this chapter, we show that – surprisingly – there is no gap between the (asymptotic)

minimum codegree threshold for perfect matchings / odd perfect matchings in 3-uniform

hypergraphs. This is in contrast to the case of (odd) Steiner triple systems, see Lemma 1.7,

Lemma 5.17, and Proposition 5.15.

In other words, if we consider 0 ⩽ r ⩽ 3, there is only a gap between the (asymptotic)

minimum codegree threshold for (n, 3, r)-Steiner systems and odd (n, 3, r)-Steiner

systems in the case of r = 2.1

As tight Hamilton cycles always form odd perfect matchings, more specifically

(n, 3, 1, 3)-designs, we have the following observation.

Observation D.1. For all n ⩾ 3 there exists an odd, 3-uniform perfect matching.

Hence, with the divisibility conditions set, we can formally define θ
PM

and θF2
PM

.

Definition D.2 (θ
PM

, θF2
PM

).

• Let θ
PM

be the infimum over all δ ∈ [0, 1] for which there exists n0 ∈ N such that

for every 3-uniform hypergraph H on n ⩾ n0 vertices with δ2(H) ⩾ δn and n ≡ 0
(mod 3) contains a perfect matching. We will refer to θ

PM
as the minimum codegree

threshold (for perfect matchings).

• Let θF2
PM

be the infimum over all δ ∈ [0, 1] for which there exists n0 ∈ N such that for

every 3-uniform hypergraph H on n ⩾ n0 vertices with δ2(H) ⩾ δn and contains

an odd perfect matching. We will refer to θF2
PM

as the minimum codegree threshold (for
odd perfect matchings).

Proposition D.3. θ
PM

= 1/2 = θF2
PM

.

The following results will facilitate the proof of Proposition D.3.

Theorem D.4 (Rödl, Ruciński, Szemerédi 2009, [45, Def. 1.1, Thm. 1.1]). For all integers

k ⩾ 2 and n ⩾ k, denote by t(k, n) the smallest t ∈ N0 such that every k-uniform

hypergraph H on n vertices with δk−1(H) ⩾ t contains a matching of size ⌊n/k⌋. Then,

for all k ⩾ 3 and sufficiently large n ∈ N, k | n, we have

t(k, n) =



n
2 + 3− k, k

2 ≡ 0 (mod 2) and
n
k ≡ 1 (mod 2),

n
2 + 5

2 − k, k ≡ 1 (mod 2) and
n−1
2 ≡ 1 (mod 2),

n
2 + 3

2 − k, k ≡ 1 (mod 2) and
n−1
2 ≡ 1 (mod 2),

n
2 + 2− k, otherwise.

1
The case r = 0 and r = 3 are trivial.
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Theorem D.5 (Rödl, Ruciński, Szemerédi 2006, [43, Thm. 1.1]). For everyγ > 0 there exists

n0 such that every 3-uniform hypergraphHwithn ⩾ n0 vertices and δ2(H) ⩾ (1/2+γ)n
contains a tight Hamiltonian cycle.

Proof of Proposition D.3. As perfect matchings are always odd perfect matchings, we have

θ
PM
⩾ θF2

PM
.

So, for the lower bound, consider n ⩾ 3. Let V := [n] = A ·∪B such that

• ||A|− |B|| is minimal, and

• |A| ≡ 1 (mod 2).

In particular, as ||A|− |B|| ⩽ 2, we always have n/2− 1 ⩽ s ⩽ n/2+ 1 for s ∈ {|A| , |B|}.

Furthermore, let

E =
{
e ∈ V(3) : |e ∩A| ≡ 0 (mod 2)

}
.

Finally, considerH = (V, E). Assume thatH contains an odd perfect matchingM ⊆ H.

We double count the number of A-edge incidences

I = {(v, e) ∈ A× E : v ∈ e} .

On the one hand, every vertex v is covered by an odd number of edges, hence

|I| =
∑
v∈A

degM(v) ≡
∑
v∈A

1 ≡ |A| ≡ 1 (mod 2).

On the other hand, every edge e that covers some vertex Amust actually cover exactly

two. Thus, we get

|I| =
∑
e∈E

|e ∩A| ≡
∑
e∈E

0 ≡ 0 (mod 2). �

Therefore, H doesn’t contain an odd perfect matching. Furthermore, we have

• deg(u, v) = |B| ∈ [n/2− 1, n/2+ 1] for all distinct u, v ∈ A,

• deg(u, v) = |A|− 1 ∈ [n/2− 2, n/2] for all (u, v) ∈ A× B, and

• deg(u, v) = |A| ∈ [n/2− 1, n/2+ 1] for all distinct u, v ∈ B.

Thus, Hwitnesses θF2
PM
⩾ 1/2.

As not every odd perfect matching is also a perfect matching, we will prove the upper

bound for both cases separately. For the upper bound of θ
PM

, we refer to Theorem D.4

for k = 3. For the upper bound of θF2
PM

, we refer to Theorem D.5.


	Declaration of Authorship
	Acknowledgements
	Abstract
	Introduction
	Dirac's theorem and its generalizations
	Lee's results and conjecture
	Main results

	Preliminaries
	Terminology and notation
	Combinatorial designs
	The resolution of the existence conjecture
	The Nash-Williams conjecture

	Overview of Lee's results
	Lower bound construction
	Outline of Lee's main theorem

	Improving the fractional threshold
	Comparison of previous approaches
	Edge-gadgets
	The weighting
	Reformulation
	Optimization

	Concluding remarks
	Moving towards Conjecture 1.6
	Variations and strengthenings

	Bibliography
	Explicit fractional Steiner triple systems
	Probabilistic inequalities
	Gurobi implementations
	Solving (P3)
	Computing fractional Steiner triple systems

	Threshold for odd perfect matchings

